Extech Digital Mini Multimeters

The Extech Digital Mini Multimeter measures AC/DC voltage, DC current, resistance, temperature, battery test, diode test, and continuity.

Features

  • Measure AC and DC Voltage to 600V
  • DC Current function to 10A
  • Thermocouple temperature measurements to 1400°F (750°C)
Starting At $21.99
Stock 2AVAILABLE

Overview
The Extech Digital Mini Multimeter features a large, easy-to-read digital display with a wide variety of measurement functions. The meter measures AC and DC voltage to 600V, and DC current to 10A. Thermocouple temperature measurements are to 1400°F, and the meter also includes resistance tests with continuity and diode functions.

Model Options
Model MN35 is a ranging unit with 9V and 1.5V battery tests. Model MN36 is an autoranging unit with AC current, capacitance, and frequency measurements. The data hold function locks readings on the display for analysis.

MN35

 

  • DC voltage range: 200mV, 2V, 20V, 200V, 600V
  • DC voltage maximum resolution: 0.1mV
  • DC voltage basic accuracy: ±0.5%
  • AC voltage range: 200V, 600V
  • AC voltage maximum resolution: 0.1V
  • AC voltage basic accuracy: ±1.2%
  • DC current range: 200mA, 10A
  • DC current maximum resolution: 0.1mA
  • DC current basic accuracy: ±1.5%
  • Resistance range: 200Ω, 2kΩ, 20kΩ, 200kΩ, 20MΩ
  • Resistance maximum resolution: 0.1μΩ
  • Resistance basic accuracy: ±0.8%
  • Temperature range: -4 to 1400°F (-20 to 750°C)
  • Temperature maximum resolution: 1°
  • Temperature basic accuracy: ±(1%+4°)
  • Battery test: 9V and 1.5V batteries
  • Power: one 9V battery
  • Dimensions: 5.43x2.83x1.5" (138x72x38mm)
  • Weight: 5.4oz (153g)

 

MN36

 

  • DC voltage range: 400mV, 4V, 40V, 400V, 600V
  • DC voltage maximum resolution: 0.1mV
  • DC voltage basic accuracy: ±0.5%
  • AC voltage range: 4V, 40V, 400V, 600V
  • AC voltage maximum resolution: 0.1V
  • AC voltage basic accuracy: ±1.2%
  • DC current range: 400μA, 4000μA, 40mA, 200mA, 10A
  • DC current maximum resolution: 0.1μA
  • DC current basic accuracy: ±1.2%
  • Resistance range: 400Ω, 4kΩ, 40kΩ, 400kΩ, 4MΩ, 40MΩ
  • Resistance maximum resolution: 0.1μΩ
  • Resistance basic accuracy: ±1.2%
  • Capacitance range: 4nF, 40nF, 400nF, 40μF, 100μF
  • Capacitance maximum resolution: 0.001nF
  • Capacitance basic accuracy: ±3.0%
  • Frequency range: 10Hz, 100Hz, 1kHz, 10kHz, 100kHz, 1MHz, 5MHz
  • Frequency maximum resolution: 0.01Hz
  • Frequency basic accuracy: ±1.0%
  • Temperature range: -4 to 1400°F (-20 to 750°C)
  • Temperature maximum resolution: 1°
  • Temperature basic accuracy: ±(1%+4°)
  • Battery test: 9V and 1.5V batteries
  • Power: 2 x AAA batteries
  • Dimensions: 5.43x2.83x1.5" (138x72x38mm)
  • Weight: 5.4oz (153g)


  • (1) Meter
  • (1) Protective rubber holster
  • (1) 9V battery (mn35)
  • (2) AAA batteries (mn36)
  • (1) Set of test leads
  • (1) Type K thermocouple probe
Questions & Answers
No Questions
Did you find what you were looking for?

Select Options

  Products 0 Item Selected
Image
Part #
Description
Price
Stock
Quantity
Extech Digital Mini Multimeters
MN35
8 function digital mini multimeter, manual ranging
Your Price $21.99
2 Available
Extech Digital Mini Multimeter
MN36
10 function digital mini multimeter, autoranging
$42.99
Check Availability  

In The News

Supplying Seattle’s Drinking Water: Using Data Buoys to Monitor the Cedar River Municipal Watershed

Providing clean, safe, and reliable drinking water for the 1.6 million people in the greater Seattle area is a top priority for Seattle Public Utilities (SPU). With limited water supplies, SPU dedicates considerable resources to maintain its watersheds and mountain reservoirs. About 70 percent of Seattle Water comes from the Cedar River Municipal Watershed , and the other 30 percent comes from the South Fork Tolt River Watershed . [caption id="attachment_39574" align="alignnone" width="940"] Data buoy in Chester Morse Lake . (Credit: Kevin Johnson / Seattle Public Utilities) [/caption] Jamie Thompson, a fisheries biologist at SPU, monitors aquatic ecosystems centered on fish listed under the U.S. Endangered Species Act (ESA).

Read More

Data-Driven Advocacy on the Lower Deschutes River

Like many freshwater environments, the Deschutes River in Oregon is under pressure from development, pollution, and climate change. Many rivers, streams and lakes in the Deschutes Basin do not meet Oregon water quality standards –where state water quality monitoring assesses levels of bacteria, pH, dissolved oxygen, temperature, and fine sediment. Hannah Camel is the Water Quality Coordinator for the Deschutes River Alliance (DRA), a non-profit organization that focuses on the health of the lower 100 miles of the Deschutes River–the area most affected by human intervention. As a data-driven organization, the DRA has benefited from the installation of two NexSens X2 data loggers.

Read More

Expanding the Port Everglades: Real-Time Monitoring of Water Quality Conditions from Planned Dredging Operation

The Port Everglades in Broward County, Florida, serves large trade vessels and cruiseliners and incoming and outgoing recreational boaters. However, as cargo ships become larger, the port must expand. A dredging project led by the US Army Corps of Engineers will substantially deepen and widen the port's navigation channel to accommodate larger Panamax cargo ships and modern cruise liners. As a result of this project, a large amount of sediment will be displaced into the water column. This suspended sediment may settle outside of the project area, burying benthic organisms like corals, and possibly carrying harmful particulates to other regions. [caption id="attachment_39497" align="aligncenter" width="2560"] A CB-950 and CB-25 deployed on site at Port Everglades.

Read More
×
Multiple Products

have been added to your cart

There are items in your cart.

Cart Subtotal: $xxx.xx

Go to Checkout