Extech Digital Mini Multimeters

The Extech Digital Mini Multimeter measures AC/DC voltage, DC current, resistance, temperature, battery test, diode test, and continuity.

Features

  • Measure AC and DC Voltage to 600V
  • DC Current function to 10A
  • Thermocouple temperature measurements to 1400°F (750°C)
Starting At $21.99
Stock 2AVAILABLE

Overview
The Extech Digital Mini Multimeter features a large, easy-to-read digital display with a wide variety of measurement functions. The meter measures AC and DC voltage to 600V, and DC current to 10A. Thermocouple temperature measurements are to 1400°F, and the meter also includes resistance tests with continuity and diode functions.

Model Options
Model MN35 is a ranging unit with 9V and 1.5V battery tests. Model MN36 is an autoranging unit with AC current, capacitance, and frequency measurements. The data hold function locks readings on the display for analysis.

MN35

 

  • DC voltage range: 200mV, 2V, 20V, 200V, 600V
  • DC voltage maximum resolution: 0.1mV
  • DC voltage basic accuracy: ±0.5%
  • AC voltage range: 200V, 600V
  • AC voltage maximum resolution: 0.1V
  • AC voltage basic accuracy: ±1.2%
  • DC current range: 200mA, 10A
  • DC current maximum resolution: 0.1mA
  • DC current basic accuracy: ±1.5%
  • Resistance range: 200Ω, 2kΩ, 20kΩ, 200kΩ, 20MΩ
  • Resistance maximum resolution: 0.1μΩ
  • Resistance basic accuracy: ±0.8%
  • Temperature range: -4 to 1400°F (-20 to 750°C)
  • Temperature maximum resolution: 1°
  • Temperature basic accuracy: ±(1%+4°)
  • Battery test: 9V and 1.5V batteries
  • Power: one 9V battery
  • Dimensions: 5.43x2.83x1.5" (138x72x38mm)
  • Weight: 5.4oz (153g)

 

MN36

 

  • DC voltage range: 400mV, 4V, 40V, 400V, 600V
  • DC voltage maximum resolution: 0.1mV
  • DC voltage basic accuracy: ±0.5%
  • AC voltage range: 4V, 40V, 400V, 600V
  • AC voltage maximum resolution: 0.1V
  • AC voltage basic accuracy: ±1.2%
  • DC current range: 400μA, 4000μA, 40mA, 200mA, 10A
  • DC current maximum resolution: 0.1μA
  • DC current basic accuracy: ±1.2%
  • Resistance range: 400Ω, 4kΩ, 40kΩ, 400kΩ, 4MΩ, 40MΩ
  • Resistance maximum resolution: 0.1μΩ
  • Resistance basic accuracy: ±1.2%
  • Capacitance range: 4nF, 40nF, 400nF, 40μF, 100μF
  • Capacitance maximum resolution: 0.001nF
  • Capacitance basic accuracy: ±3.0%
  • Frequency range: 10Hz, 100Hz, 1kHz, 10kHz, 100kHz, 1MHz, 5MHz
  • Frequency maximum resolution: 0.01Hz
  • Frequency basic accuracy: ±1.0%
  • Temperature range: -4 to 1400°F (-20 to 750°C)
  • Temperature maximum resolution: 1°
  • Temperature basic accuracy: ±(1%+4°)
  • Battery test: 9V and 1.5V batteries
  • Power: 2 x AAA batteries
  • Dimensions: 5.43x2.83x1.5" (138x72x38mm)
  • Weight: 5.4oz (153g)


  • (1) Meter
  • (1) Protective rubber holster
  • (1) 9V battery (mn35)
  • (2) AAA batteries (mn36)
  • (1) Set of test leads
  • (1) Type K thermocouple probe
Questions & Answers
No Questions
Did you find what you were looking for?

Select Options

  Products 0 Item Selected
Image
Part #
Description
Price
Stock
Quantity
Extech Digital Mini Multimeters
MN35
8 function digital mini multimeter, manual ranging
Your Price $21.99
2 Available
Extech Digital Mini Multimeter
MN36
10 function digital mini multimeter, autoranging
$42.99
Check Availability  

In The News

Save our Bogs! Culture, Conservation and Climate Action in Ireland’s Peatlands

Characterized by long-term accumulation under waterlogged conditions, peatlands exist on every continent and account for 3-4% of the global land surface . Small but mighty, these often overlooked wetland environments are estimated to hold as much as one-third of the world's organic carbon in their soil—twice the amount found in the entirety of the Earth's forest biomass. While healthy peatlands can trap and store carbon, regulate water, and provide important habitats for rare species, human alteration has disturbed peatland carbon and nitrogen cycles on a global scale. Approximately 12% of the world’s peatlands have been drained and degraded through conversion for agriculture, forestry, infrastructure development, and other uses.

Read More

Sargassum Surge: How Seaweed is Transforming our Oceans and Coastal Ecosystems

Until recently, Sargassum –a free-floating seaweed–was distributed throughout the Sargasso Sea , the north Caribbean Sea, and the Gulf of Mexico. But in the space of a decade, this seaweed has, as one scientist remarks , “Gone from a nonfactor to the source of a terrible crisis.” Driven by climate change, anomalous North Atlantic Oscillation in 2009-2010 and a glut of anthropogenic pollutants, sargassum has proliferated. Seasonally recurrent mats as deep as 7m now bloom in the “Great Atlantic Sargassum Belt” (GASB), which covers areas of the Atlantic from West Africa to the Caribbean Sea and Gulf of Mexico. Every year, millions of tons wash up along the shores of more than 30 countries . Dr.

Read More

Great Lakes Research Center: Designing Targeted Monitoring Solutions

According to the National Oceanic and Atmospheric Administration ( NOAA ), the Great Lakes have more miles of coastline than the contiguous Atlantic and Pacific coasts combined and contain 20 percent of the world's freshwater, making it a critical region to protect and conserve. Continuous monitoring and data-informed resource management are key components of managing waters in the region. Hayden Henderson, a research engineer with the Great Lakes Research Center (GLRC), designs and deploys monitoring platforms throughout the Great Lakes. With a background in environmental engineering, Henderson enjoyed the challenge of creating systems and making them work to obtain difficult, remote measurements.

Read More
×
Multiple Products

have been added to your cart

There are items in your cart.

Cart Subtotal: $xxx.xx

Go to Checkout