Extech HD350 Pitot Tube Anemometer + Differential Manometer

The Extech Pitot Tube Anemometer + Differential Manometer reaches in tight locations where a vane anemometer can't fit to measure air velocity/airflow.

Features

  • ±0.7252psi range
  • 5 selectable units of pressure measurement
  • Stores/recalls up to 99 readings in each mode
Your Price $430.99
Stock Check Availability  

Overview
The Extech Pitot Tube Anemometer + Differential Manometer measures air velocity and airflow in difficult-to-reach or tight locations. The meter simultaneously displays pressure, air velocity, or airflow plus temperature on a large LCD display with backlighting. It has 5 selectable units of pressure measurements and a ±0.7252psi range.

Data Storage
It stores and recalls up to 99 readings in each mode to then be transferred to a PC via the UBS port to analize data points using the included software. Additional meter functions include max/min/avg recording, relative time stamp, data hold, and auto power off.

  • psi range: 0.7252psi
  • psi resolution: 0.0001psi
  • psi accuracy: ±0.3%FS
  • mbar range: 50.00mbar
  • mbar resolution: 0.01mbar
  • mbar accuracy: ±0.3%FS
  • inH2O range: 20.07inH2O
  • inH2O resolution: 0.01inH2O
  • inH2O accuracy: ±0.3%FS
  • mmH2O range: 509.8mmH2O
  • mmH2O resolution: 0.01mmH2O
  • mmH2O accuracy: ±0.3%FS
  • Pa range: 5000Pa
  • Pa resolution: 1Pa
  • Pa accuracy: ±0.3%FS
  • Repeatability: ±0.2% (max. ±0.5%FS)
  • Linearity/hysterisis: ±0.29FS
  • Maximum pressure: 10psi
  • Response time: 0.5s typica
  • ft/min range: 200 to 15733
  • ft/min resolution: 1
  • ft/min accuracy: ±3% rdg
  • m/s range: 1 to 80.00
  • m/s resolution: 0.01
  • m/s accuracy: ±3% rdg
  • km/h range: 3.5 to 288.0
  • km/h resolution: 0.1
  • km/h accuracy: ±3% rdg
  • MPH range: 2.25 to 178.66
  • MPH resolution: 0.01
  • MPH accuracy: ±3% rdg
  • knots range: 2.0 to 154.6
  • knots resolution: 0.1
  • knots accuracy: ±3% rdg
  • CFM range: 0 to 99,999
  • CFM resolution: 0.001
  • CFM accuracy: ±3% rdg
  • CMM range: 0 to 99,999
  • CMM resolution: 0.001
  • CMM accuracy: ±3% rdg
  • °F range: 32.0 to 122.0°F
  • °F resolution: 0.1°
  • °F accuracy: ±2°F
  • °C range: 0 to 50°C
  • °C resolution: 0.1°
  • °C accuracy: ±1°C
  • Meter dimensions: Meter: 8.2 x 2.9 x 1.9" (210 x 75 x 50mm)
  • Meter weight: 12oz (340g)
  • Pitot tube dimensions: 15.4 x 7.7” (390 x 195mm)
  • Pitot tube weight: 7.2oz (204g)
  • (1) Meter
  • (1) Pitot tube
  • (2) 33.5 (85cm) connection hoses
  • (1) 9V battery
  • (1) 100V-240V universal AC adaptor
  • (1) Hard carrying case
Questions & Answers
How does this meter measure air flow and pressure?
This anemometer uses a unique pitot tube method to measure air velocity and air flow, and a manometer hose to measure pressure in small, tight areas. To measure air velocity or air flow, the pitot tube is connected to the meter by the two pressure manometer hoses. Then the tube is held in the flow of air with the mouth of the tube facing the oncoming air. To measure pressure, connect only one hose to the input(+) port on the meter, and hold the open end of the tube toward the air flow.
Did you find what you were looking for?

Select Options

  Products 0 Item Selected
Image
Part #
Description
Price
Stock
Quantity
Extech HD350 Pitot Tube Anemometer + Differential Manometer
HD350
Pitot tube anemometer + differential manometer
Your Price $430.99
Check Availability  

In The News

Save our Bogs! Culture, Conservation and Climate Action in Ireland’s Peatlands

Characterized by long-term accumulation under waterlogged conditions, peatlands exist on every continent and account for 3-4% of the global land surface . Small but mighty, these often overlooked wetland environments are estimated to hold as much as one-third of the world's organic carbon in their soil—twice the amount found in the entirety of the Earth's forest biomass. While healthy peatlands can trap and store carbon, regulate water, and provide important habitats for rare species, human alteration has disturbed peatland carbon and nitrogen cycles on a global scale. Approximately 12% of the world’s peatlands have been drained and degraded through conversion for agriculture, forestry, infrastructure development, and other uses.

Read More

Sargassum Surge: How Seaweed is Transforming our Oceans and Coastal Ecosystems

Until recently, Sargassum –a free-floating seaweed–was distributed throughout the Sargasso Sea , the north Caribbean Sea, and the Gulf of Mexico. But in the space of a decade, this seaweed has, as one scientist remarks , “Gone from a nonfactor to the source of a terrible crisis.” Driven by climate change, anomalous North Atlantic Oscillation in 2009-2010 and a glut of anthropogenic pollutants, sargassum has proliferated. Seasonally recurrent mats as deep as 7m now bloom in the “Great Atlantic Sargassum Belt” (GASB), which covers areas of the Atlantic from West Africa to the Caribbean Sea and Gulf of Mexico. Every year, millions of tons wash up along the shores of more than 30 countries . Dr.

Read More

Great Lakes Research Center: Designing Targeted Monitoring Solutions

According to the National Oceanic and Atmospheric Administration ( NOAA ), the Great Lakes have more miles of coastline than the contiguous Atlantic and Pacific coasts combined and contain 20 percent of the world's freshwater, making it a critical region to protect and conserve. Continuous monitoring and data-informed resource management are key components of managing waters in the region. Hayden Henderson, a research engineer with the Great Lakes Research Center (GLRC), designs and deploys monitoring platforms throughout the Great Lakes. With a background in environmental engineering, Henderson enjoyed the challenge of creating systems and making them work to obtain difficult, remote measurements.

Read More
×
Multiple Products

have been added to your cart

There are items in your cart.

Cart Subtotal: $xxx.xx

Go to Checkout