Hach Digital Titrator

The Hach Digital Titrator is a lightweight device that performs titrations quickly and economically at the bench or in the field.

Features

  • Eliminates cleaning and assembly chores
  • Accuracy of +/-1% for most samples
  • Many titrant solutions available
Your Price $322.00
Stock Drop Ships From Manufacturer  

Overview
The Hach Digital Titrator is a lightweight device that performs titrations quickly and economically at the bench or in the field. Weighing just 132 grams (less than 4 oz.), the Digital Titrator accommodates interchangeable titrant cartridges, so multiple titrations merely involve changing the cartridge and delivery tube. Snapping cartridges in and out saves the time associated with cleaning and assembling cumbersome, fragile glass burets and virtually eliminates the possibilities of cross-contamination and over-titrating.

Durable
Designed and built for durability, the Digital Titrator comes with a lifetime warranty. Hach Company will repair or replace it free of charge, provided it has not been abused. So carry it to sample sites within the water or wastewater plant; take it to the field for ecology or water quality studies - the Digital Titrator is built to withstand heavy use.

Benefits

  • Faster than a burette
  • Accurate to +/-1%
  • Complete portability
  • Interchangeable cartridges
  • Multiple titration methods available
  • Delivery: 800 digits/mL or 0.00125 mL/digit
  • Accuracy: +/-1% for readings over 100 digits (Uncertainty of readings is 1 digit. Most samples require more than 100 digits)
  • Weight: 132 g (4.7 oz.)
  • (1) Digital titrator, 0.00125 mL/digit
  • (5) Straight delivery tubes
  • (1) Carrying case
  • (1) Operations manual
Questions & Answers
No Questions
Did you find what you were looking for?

Select Options

  Products 0 Item Selected
Image
Part #
Description
Price
Stock
Quantity
Hach Digital Titrator
1690001
Digital titrator
Your Price $322.00
Drop Ships From Manufacturer  
  Accessories 0 Item Selected
Notice: At least 1 product is not available to purchase online
×
Multiple Products

have been added to your cart

There are items in your cart.

Cart Subtotal: $xxx.xx

Go to Checkout

In The News

Cal Poly, San Luis Obispo Manages Monitoring Efforts in Morro Bay

California Polytechnic State University, San Luis Obispo (Cal Poly, SLO), has been monitoring Morro Bay for decades, and while the monitoring program has changed over the years, the dedication to monitoring the bay has remained the same. The project started in 2006 as a Packard Foundation-funded initiative to monitor water quality flowing in and out of Morro Bay. The goal at the time was to use the data collected to develop and inform an ecosystem-based management plan in collaboration with the Morro Bay National Estuary Program (MBNEP). Since the estuary was the focus at the time, researchers were monitoring water flowing into the estuary from Chorro Creek and Los Osos Creek.

Read More

Green Water in Green Bay: Using Data Buoys to Monitor the Southern Bay

While the bay of Green Bay has been referred to as the largest freshwater “estuary” in the world, the watershed hosts intensive agriculture and contributes one-third of Lake Michigan’s total phosphorus load.  The Fox River flows into the bay, carrying excess nutrients largely the result of non-point source runoff from the watershed. With a history of deterioration extending well into the last century, the bay ecosystem suffered significant declines in water quality.  This, in turn, stimulated major clean-up and ongoing restoration efforts to improve water quality. Tracking these changes is an important aspect of ecosystem management.

Read More

Cross-Border Sewage Contaminated Flows: Monitoring the Tijuana River

The Tijuana River runs across the US-Mexico boundary, flowing into and throughout southern California, carrying with it nutrients and contaminants throughout the estuary. In recent decades, the flows have been heavily polluted with untreated sewage from the City of Tijuana. The wastewater enters the greater Tijuana River estuary, impacting coastal communities and disrupting the natural environment. In order to better understand these cross-border flows, researchers out of San Diego University sought to monitor the waterway test the capabilities of in-situ sensors to measure the contaminated water. Natalie Mladenov and Trent Biggs were two of the researchers involved in the project, deploying a real-time monitoring system in May of 2021.

Read More