Hach Intellical CDC401 Laboratory 4-Poles Graphite Conductivity Cells
Features
- The laboratory version is available with a 3 or 1m cable
- Ideal for measuring electrical conductivity, salinity, resistivity, or total dissolved solids (TDS)
- Free ground shipping
- Expedited repair and warranty service
- Lifetime technical support
- More
Overview
Intellical CDC401 is a digital, graphite, 4-pole conductivity cell with a temperature sensor. The laboratory version is available with a 3 or 1 m cable. The CDC401 is ideal for measuring electrical conductivity, salinity, resistivity, or total dissolved solids (TDS) in wastewater, drinking water, or general water quality applications.
Accuracy: |
Cond: ±0.5% of range Salinity: ±0.1, ±1 digit TDS: ±0.5% ±1 digit |
Cable Length: |
1 m (3.28 ft) |
Electrode Type: |
Conductivity Cell; 4 Poles - Graphite |
Kit?: |
No |
Length: |
184 mm (7.24 in.) |
Method Type: |
Laboratory: 4 Poles - Graphite |
Parameter: |
Conductivity |
Probe Type: |
Standard |
Product Kit: |
Model: CDC401 Accessories Included: None |
Range: |
Conductivity: 0.0 µS/cm - 200 mS/cm TDS: 0.00 mg/L - 50.0 g/L as NaCl Salinity: 0 - 42 ppt or ‰ Resistivity: 2.5 Ωcm - 49 MΩcm |
Resolution: |
0.01/0.1 (5 digits max.) |
Sample depth: |
45 mm (1.77 in.) |
Sensor material: |
Noryl |
Sensor Type: |
4-poles conductivity probe Graphite, k = 0.40 cm-1 |
Temperature Accuracy: |
±0.3 °C (±0.54 °F) |
Temperature Range: |
-10 - 110 °C (14 - 230 °F) |
Temperature Resolution: |
0.1 °C (0.18 °F) |
Test requirements: |
Parameter Needed: Conductivity Minimum Sample Depth (mm): 45 |
Thermistor: |
ATC |
Warranty: |
12 months |
Weight: |
0.1 kg |
What's included?: |
IntelliCAL CDC401 Laboratory Conductivity Cell, 1 m cable, Test certificate, and Basic User Manual. |
IntelliCAL CDC401 Laboratory Conductivity Cell, 1m cable, Test certificate, and Basic User Manual.
In The News
Lake Erie Volunteer Science Network: Building Trust in Citizen Science Programs
Citizen science programs have popped up across the United States, focusing on connecting local communities with nearby water resources and building a trustworthy data pool over the sampling period. While commonly utilized as a means of ensuring that large watersheds or lake regions are adequately sampled, the credibility and success of such programs have been called into question. 
 
[caption id="attachment_38996" align="alignnone" width="940"] HRWC volunteers measure stream velocity across a subsection of Woods Creek, a tributary of the Huron River near Belleville, Michigan. Stream velocity measurements can be combined with water level measurements to calculate stream flow and chemical parameter loads.
Read MoreMonitoring Lake Erie’s Eastern Basin: Building Long-Term Data and Real-Time Public Solutions
In the eastern basin of Lake Erie, off the coast of Dunkirk, New York, a data buoy collects valuable water quality, weather, and wave data that inform residents and regulatory groups of conditions on the water. 
 
Since 2011, Buffalo State University’s Great Lakes Center has maintained and operated the Dunkirk buoy with funding from the Great Lakes Observing System (GLOS) and field support from the NYSDEC Lake Erie Fisheries Research Unit. 
 
[caption id="attachment_38976" align="aligncenter" width="940"] The Dunkirk Buoy viewed from the research vessel after being deployed in early spring.
Read MoreSonTek CastAway-CTD Meter Review
Lightweight and easy to use, the SonTek CastAway offers a convenient 3-in-1 solution for measuring conductivity, temperature, and depth profiles. At a 5 Hz sampling rate, the CastAway is designed for up to 1 m/s free-fall through the water column. 
 
 With fast response and accurate conductivity, temperature, and depth measurements, the CastAway is ideal for thermocline and halocline profiling. The unit also reports salinity and speed of sound. 
 
[caption id="attachment_38732" align="alignnone" width="940"] Environmental scientist, Katelyn Kubasky, holding the SonTek CastAway in front of the pond at the Fondriest Center for Environmental Studies.
Read More