Hach PathoScreen Medium Presence/Absence Powder Pillows

The Hach PathoScreen Medium Presence/Absence Powder Pillows detect waterborne pathogens associated with fecal contamination of water sources.

Features

  • Detects the presence of hydrogen sulfide-producing bacteria
  • Eliminates need for an incubator in tropical and semi-tropical climates
  • Complete solution for drinking water testing
Your Price $97.75
Stock Drop Ships From Manufacturer  

Overview
Hach's PathoScreen Medium Presence/Absence Powder Pillows detect the waterborne pathogens associated with fecal contamination of water sources. The sterilized powder medium is a reliable medium for monitoring drinking water systems in developing tropical countries, in remote field locations and in disaster or emergency situations.

Detected Bacteria
The PathoScreen Medium Presence/Absence Powder Pillows detect the presence of hydrogen sulfide-producing bacteria, including:

  • Salmonella
  • Citrobacter
  • Proteus
  • Edwardsiella
  • some species of Klebsiella

Packaging
The PathoScreen Medium is dehydrated, sterilized and packaged in powder pillows. Powder pillows are available for both Presence/Absence (P/A) and Most Probable Number (MPN) testing. Each powder pillow contains enough medium for one test.

  • (50) PathoScreen Medium Presence/Absence Powder Pillows
  • (1) Certificate of Analysis
Questions & Answers
No Questions
Did you find what you were looking for?

Select Options

  Products 0 Item Selected
Image
Part #
Description
Price
Stock
Quantity
Hach PathoScreen Medium Presence/Absence Powder Pillows
2610696
PathoScreen Presence/Absence Powder Pillows, pack of 50
Your Price $97.75
Drop Ships From Manufacturer  
Notice: At least 1 product is not available to purchase online
×
Multiple Products

have been added to your cart

There are items in your cart.

Cart Subtotal: $xxx.xx

Go to Checkout

In The News

Climate Change and Microplastics: Monitoring Lake Champlain

Most people go to Lake Champlain for its exceptional views and thrilling boating, but it’s also home to a wide variety of interesting aquatic research projects. From studying microplastics to thermal dynamics of the lake, Timothy Mihuc, director of the Lake Champlain Research Institute (LCRI) at the State University of New York at Plattsburgh (SUNY Plattsburgh), has spent his career studying aquatic ecosystems.  As an aquatic biologist, he’s the main investigator on Lake Champlain’s research studies while also managing their grants, employees, and their hands-on buoy work.  Over the years, LCRI has received a number of environmental grants that aid in its monitoring research.

Read More

Current Monitoring after the Francis Scott Key Bridge Collapse

On March 26th, according to The Baltimore Sun , a 984-foot, 112,000-ton Dali lost propulsion and collided with a support column of the Francis Scott Key Bridge, collapsing the structure. Soon after the event, search and rescue, salvage crews, and other emergency responders were mobilized after the collision. As salvage efforts progressed in early April, NOAA’s Center for Operational Oceanographic Products and Services (CO-OPS) responded to a request for real-time tidal currents data and deployed a current monitoring buoy—CURBY (Currents Real-time BuoY)—into the Patapsco River north of the Francis Scott Key Bridge.

Read More

Soundscapes of the Solar Eclipse: Citizen Science Supporting National Research

On April 8, 2024, millions of people around the world had their eyes glued to the sky to witness a historic cosmic event. The total solar eclipse captured the headlines and the minds of many who became eager to gaze at the heavens as the sky went dark for a few minutes. However, not everyone used their sense of sight during the eclipse, some were listening to the sounds of the natural world around them as the light faded from above. The Eclipse Soundscape Project is a NASA-funded citizen science project that focuses on studying how the annular solar eclipse on October 14, 2023, and the April 8, 2024 total solar eclipse impacted life on Earth.  The project revisits an initiative from the 1930s that showed animals and insects are affected by solar eclipses.

Read More