Hach sensION+ 5021T Laboratory Combination pH Electrode
Features
- Precision temperature measurement with the patented ContATC system
- 3-in-1 probe design made for the most difficult sample types
- Encapsulated cartridge reference system ensures premium stability and long lifespan
- Free ground shipping
- Expedited repair and warranty service
- Lifetime technical support
- More
Overview
The Hach sensION+ 5021T is a glass combination pH electrode with a refillable reference electrolyte and built-in temperature sensor. The 5021T has a fixed 1-meter cable with BNC connector (pH) and banana (temperature) connectors. It is intended for use with Hach sensION+ Laboratory pH meters.
Accuracy
The 5021T has a sleeve junction with a design that ensures high electrolyte flow, making it very hard to clog, as well as an encapsulated reference system with a silver ion barrier. The 5021T's ContATC system provides the precision temperature measurements required for high-performance analysis. This patented system utilizes a thermo-conductive silicone to improve the speed and performance of the Pt1000 temperature sensor.
Applications
- Low ionic strength applications
- Samples with colloids
- Wines and paints
- Viscous samples such as emulsions and creams
- Filling Solution: LZW9500.99
- Material Sensor Body: Glass
- Special Feature: Clog-free Sleeve Junction for low ionic strength.
- Temperature Range: Continuous use: 0 - 60 °C
- Thermistor: Pt1000
In The News
Ocean acidification: University of Washington's giant plastic bags help control research conditions
With oceans becoming more acidic worldwide, scientists are getting creative in designing experiments to study them. For example, one group at the University of Washington is using giant plastic bags to study ocean acidification. 
 Each bag holds about 3,000 liters of seawater and sits in a cylinder-like cage for stability. The group at UW, made up of professors and students, is controlling carbon dioxide levels in the bags over a nearly three-week period, during which they are looking at the effects of increased acidity on organisms living near the San Juan Islands. 
 “These mesocosms are a way to do a traditional experiment you might do in a lab or classroom,” said Jim Murray, professor of oceanography at the University of Washington.
Read MoreNOAA Alaska buoy network to monitor North Pacific ocean acidification
National Oceanic and Atmospheric Administration scientists detected signs of ocean acidification in the waters that hold the vulnerable and valuable fisheries of the North Pacific off the coast of Alaska, but they only had a snapshot of the action. 
 
“We know that in this place were important commercial and subsistence fisheries that could be at risk from ocean acidification,” said Jeremy Mathis, a NOAA Pacific Marine Environmental Laboratory researcher and professor at the University of Alaska Fairbanks. 
 
To understand how ocean acidification affects the North Pacific, NOAA scientists created a mooring network that collects constant in situ data on parameters contributing to acidification. They hope it will reveal seasonal trends and patterns left out by their snapshots.
Read MoreLake Erie Volunteer Science Network: Building Trust in Citizen Science Programs
Citizen science programs have popped up across the United States, focusing on connecting local communities with nearby water resources and building a trustworthy data pool over the sampling period. While commonly utilized as a means of ensuring that large watersheds or lake regions are adequately sampled, the credibility and success of such programs have been called into question. 
 
[caption id="attachment_38996" align="alignnone" width="940"] HRWC volunteers measure stream velocity across a subsection of Woods Creek, a tributary of the Huron River near Belleville, Michigan. Stream velocity measurements can be combined with water level measurements to calculate stream flow and chemical parameter loads.
Read More