NexSens CB-75-SVS Wave Buoy

The CB-75-SVS Wave Buoy offers the latest in real-time wave observations in a compact, affordable, and easy to deploy platform.

Features

  • Measures wave height, period & direction
  • Designed for tethered moorings
  • Integrated SeaView Systems SVS-603HR wave sensor
Your Price Call
Stock Check Availability  

The CB-75-SVS Wave Buoy offers the latest in real-time wave observations in a compact, affordable, and easy to deploy platform. At 21” (53.34cm) hull diameter and 40 lb. (18.14kg) weight, it’s ideally suited for tethered moorings. The buoy accurately measures wave height, period, direction, and more using SeaView Systems’ industry-leading SVS-603HR sensor, relied upon in buoy networks by NOAA and many others throughout the world. External sensor ports with wet-mate connectors support GPS, meteorological, and water quality sensors for maximum flexibility.

The buoy is constructed of an inner core of cross-linked polyethylene foam with a tough polyurea skin. A rechargeable battery with integrated solar panels powers the wave buoy continuously, and all electronics are housed in a quick-removable waterproof package with wet-mate connectors. A removeable instrument cage serves as counter-ballast and supports instrument mounting, while three 1.5” (3.81cm) pass-through holes facilitate cable routing of underwater sensors.

Available with integrated 4G LTE or Iridium satellite communications, the CB-75-SVS Wave Buoy sends data in real-time to the cloud-based WQData LIVE datacenter. In the Basic tier, this free service allows users to securely access and analyze data, as well as share data through an auto-report. Subscription-based tiers of WQData LIVE are also available for generating custom alarms, exporting data through an API or custom NDBC/GLOS formats, and providing a publicly-accessible version of the project website.

Wave Sensor: SeaView Systems SVS-603HRi
Parameters: Hs Wave Height (Significant Wave Height), TP (DPD) Wave Period, Dominant Wave Direction, Mean Wave Direction (MWD), Te Energy Period, RMS Tilt Angle, Max Tilt Angle
Range: Wave Height: 0.2-20m; Wave Period: 1.5-20 seconds; Wave Direction: 0-360°
Resolution: Wave Height: 0.001m; Wave Period: 0.001 seconds; Wave Direction: 0.001°
Accuracy: Wave Height: +/- 0.5cm; Wave Period: <1%; Wave Direction: +/-2°

Buoy: NexSens CB-75
Hull Outer Diameter: 21” (53.34cm)
Hull Height: 13” (33.02cm)
Tower Height: 8.2” (20.83cm)
Solar Panels: 3x 4-watts
Weight: 40 lb. (18.20kg)
Net Buoyancy: 75 lb. (34.00kg)
Tethering Attachments: 3x 3/8” eye nuts

Data Logger: NexSens X3-SVS
Operating Temperature: -40°C to 70°C
Rating: IP68
User Interface: Wireless Bluetooth or wired RS-485 via USB adapter to CONNECT Software; WQData LIVE Web Datacenter with optional wireless telemetry; Status beeps
Real Time Clock (RTC): <30sec/month drift1; Auto-sync weekly2; Internal backup battery
Data Logging: 8 MB non-volatile flash memory; >1 year storage with 20 parameters at 15-minute interval; Max 200 parameters per log interval
Log Interval: User configurable from 5-minute (20-minute default)3; Unique interval per sensor
Transmit Interval: User configurable from 5-minute (10-minute default)
Transmission Trigger: Time-based; Selective parameter upload option
Sensor Interfaces: RS-232 (2 Channels), SDI-12, RS-485, Pulse Count
Built-in Sensors: Temperature (-40° to 100°C, 0.016°C resolution, ±0.3°C accuracy); Humidity (0% to 100%, 0.03% resolution, ±4% accuracy from 5 to 95% RH; System voltage; System current; System power; Real-time clock (RTC) battery voltage
Sensor Ports: (2) MCBH-8-MP for sensor interface (RS-232, RS-485, SDI-12, Power, GND)
Power Port: (1) MCBH-6-FS for power and communication (12V Solar In, Power Switch, RS-485 Host, GND)
Telemetry Options: 4G LTE global cellular; Iridium satellite
Antenna Port: Type N female

Notes
1Assumes 25ºC operating temperature
2Requires the X3-SVS to be connected to the internet
3Minimum log interval dependent on sensor limitations and processing time

Questions & Answers
No Questions
Did you find what you were looking for?

Select Options

  Products 0 Item Selected
Image
Part #
Description
Price
Stock
Quantity
NexSens CB-75-SVS Wave Buoy
CB-75-SVS
CB-75-SVS wave buoy
Request Quote
Check Availability  
NexSens CB-75-SVS Wave Buoy
CB-75-SVS-4G
CB-75-SVS wave buoy with global 4G LTE cellular telemetry
Request Quote
Check Availability  
NexSens CB-75-SVS Wave Buoy
CB-75-SVS-IR
CB-75-SVS wave buoy with Iridium satellite telemetry
Request Quote
Check Availability  
  Accessories 0 Item Selected
Notice: At least 1 product is not available to purchase online
×
Multiple Products

have been added to your cart

There are items in your cart.

Cart Subtotal: $xxx.xx

Go to Checkout

In The News

Climate Change and Microplastics: Monitoring Lake Champlain

Most people go to Lake Champlain for its exceptional views and thrilling boating, but it’s also home to a wide variety of interesting aquatic research projects. From studying microplastics to thermal dynamics of the lake, Timothy Mihuc, director of the Lake Champlain Research Institute (LCRI) at the State University of New York at Plattsburgh (SUNY Plattsburgh), has spent his career studying aquatic ecosystems.  As an aquatic biologist, he’s the main investigator on Lake Champlain’s research studies while also managing their grants, employees, and their hands-on buoy work.  Over the years, LCRI has received a number of environmental grants that aid in its monitoring research.

Read More

Current Monitoring after the Francis Scott Key Bridge Collapse

On March 26th, according to The Baltimore Sun , a 984-foot, 112,000-ton Dali lost propulsion and collided with a support column of the Francis Scott Key Bridge, collapsing the structure. Soon after the event, search and rescue, salvage crews, and other emergency responders were mobilized after the collision. As salvage efforts progressed in early April, NOAA’s Center for Operational Oceanographic Products and Services (CO-OPS) responded to a request for real-time tidal currents data and deployed a current monitoring buoy—CURBY (Currents Real-time BuoY)—into the Patapsco River north of the Francis Scott Key Bridge.

Read More

Soundscapes of the Solar Eclipse: Citizen Science Supporting National Research

On April 8, 2024, millions of people around the world had their eyes glued to the sky to witness a historic cosmic event. The total solar eclipse captured the headlines and the minds of many who became eager to gaze at the heavens as the sky went dark for a few minutes. However, not everyone used their sense of sight during the eclipse, some were listening to the sounds of the natural world around them as the light faded from above. The Eclipse Soundscape Project is a NASA-funded citizen science project that focuses on studying how the annular solar eclipse on October 14, 2023, and the April 8, 2024 total solar eclipse impacted life on Earth.  The project revisits an initiative from the 1930s that showed animals and insects are affected by solar eclipses.

Read More