NexSens High Gain Cellular Antenna

The A49 high gain cellular antenna offers improved performance with X-Series data loggers when the standard whip antenna is not sufficient.

Features

  • Includes antenna and mounting bracket for simple installation in minutes
  • High performance whipless design is perfect for field deployments
  • Employs an N-style female RF connector for use with standard RF cables
$240.00
Stock Check Availability  
The A49 high gain antenna features an 821-896 MHz frequency range, weatherproof ABS housing, 3 dBi nominal gain, and an N-style connector for quick connection to NexSens RF cables.

This low-profile antenna is 2.30" tall and extremely rugged for commercial applications. The black chrome bushing with o-ring ensures a durable seal to allow for long term deployments in harsh environments.
  • Nominal Gain: 3 dBi
  • Cellular Frequency Range: 821-896 MHz
  • PCS Frequency Range: 1850-1990 MHz
  • Maximum Power: 150 W
  • Diameter: 1.438"
  • Height: 2.30"
  • Weight: 0.15 lb
  • (1) 3 dBi high gain cellular antenna
  • (1) Antenna mounting aluminum angle bracket, 6" length
  • (2) SS hose clamps for mounting, 2.75" max diameter
Questions & Answers
No Questions
Did you find what you were looking for?

Select Options

  Products 0 Item Selected
Image
Part #
Description
Price
Stock
Quantity
NexSens High Gain Cellular Antenna
A49
High gain cellular antenna, Type N female connector
$240.00
Check Availability  
  Accessories 0 Item Selected

In The News

Spring 2025 Environmental Monitor Available Now

In the Spring 2025 edition of the Environmental Monitor, we highlight partnerships across the world and the importance of collaboration between government agencies, universities, environmental groups, local communities, and other stakeholders. From great white shark research in Cape Cod to monitoring fisheries in Lake Erie, this latest edition underscores partnerships that connect stakeholders in a watershed through environmental data. With an emphasis on data sharing, a combination of real-time and discrete sampling keeps the public and partners informed of environmental conditions. Our writers also sought out science professionals dedicated to working with peers within and outside of the environmental sector.

Read More

Monitoring Mariculture in the Gulf of Alaska

The mariculture industry in the Gulf of Alaska has been steadily growing in recent years, guided by ongoing research to help refine farm location and cultivation practices. A subset of aquaculture, mariculture focuses on rearing organisms in the open ocean. In Alaska, finfish farming is illegal, so most farms cultivate kelp, oysters, or a combination of the two. These small, locally operated farms started popping up in the Gulf of Alaska in the early 1990s, when shellfish farming first became legal. Kelp farming did not begin to catch on in the state until 2016. Many of the coastal areas that have grown interested in mariculture are historically commercial fishing communities.

Read More

Supplying Seattle’s Drinking Water: Using Data Buoys to Monitor the Cedar River Municipal Watershed

Providing clean, safe, and reliable drinking water for the 1.6 million people in the greater Seattle area is a top priority for Seattle Public Utilities (SPU). With limited water supplies, SPU dedicates considerable resources to maintain its watersheds and mountain reservoirs. About 70 percent of Seattle Water comes from the Cedar River Municipal Watershed , and the other 30 percent comes from the South Fork Tolt River Watershed . [caption id="attachment_39574" align="alignnone" width="940"] Data buoy in Chester Morse Lake . (Credit: Kevin Johnson / Seattle Public Utilities) [/caption] Jamie Thompson, a fisheries biologist at SPU, monitors aquatic ecosystems centered on fish listed under the U.S. Endangered Species Act (ESA).

Read More
×
Multiple Products

have been added to your cart

There are items in your cart.

Cart Subtotal: $xxx.xx

Go to Checkout