Onset ECH2O 10HS Soil Moisture Smart Sensor
Features
- Provides data directly in volumetric water content
- High-frequency (70 MHz) circuit provides good accuracy even in high-salinity and sandy soils
- Compatible with Onset stand-alone and web-based weather stations
- Expedited repair and warranty service
- Lifetime technical support
- More
Overview
The Onset ECH2O 10HS soil moisture smart sensor measures a large 1-liter volume of soil, providing a more accurate picture of average soil moisture. The sensor integrates the field-proven 10HS Sensor and a 12-bit A/D, providing ±3% accuracy in most soil conditions and ±2% accuracy with soil-specific calibration.
Mechanics
The 10cm probes measure soil moisture over a larger volume of soil, helping to average out any soil variability. Readings are provided directly in volumetric water content. The sensor's high-frequency design minimizes salinity and textural effects and gives it a wide measurement range.
Measurement range in soil: 0 to 0.570 m³/m³ (volumetric water content)
Accuracy:
±0.033 m³/m³ (±3.3%) typical 0 to +50°C (+32° to +122°F) for mineral soils up to 10 dS/m
±0.020 m³/m³ (±2%) with soil specific calibration
Resolution: 0.0008 m³/m³ (0.08%)
Soil probe dimensions: 160 x 32 x 2 mm (6.5 x 1.25 x 0.08 in.)
Weight: 190 grams (6.7 oz)
Decagon probe part no.: 10HS
Sensor operating temperature:
0° to +50°C (+32° to +122°F). Although the sensor probe and cable can safely operate at below-freezing temperatures (to -40°C/F) and the smart sensor tube (the white portion of the sensor cable that houses the electronics) can be exposed to temperatures up to +70°C (+158°F), the soil moisture data collected at these extreme temperatures is outside of the sensor's accurate measurement range. Extended temperatures above +50°C (+122°F) will decrease logger battery life when using for the S-SMD-M005 smart sensor.
Volume of influence: 1 liter (33.8 oz)
Sensor frequency: 70 MHz
Bits per sample: 12
Number of data channels: 1
Measurement averaging option: No
Cable length available: 5 m (16 ft)
Length of Smart Sensor network cable: 0.5 m (1.6 ft)
In The News
Sustainable Fishing in Alaska: Protecting the Salmon Capital of the World through Research
In the far north, the Alaska Peninsula stretches away from the Last Frontier into the Pacific Ocean. A narrow strip of land dotted with freshwater lakes and intruded upon by ocean inlets–this unique region is intimately connected with the surrounding water. 
 
Nestled halfway down the peninsula's southern coast are the small villages of Chignik. The area has historically been home to the Aleut people and has been heavily reliant on fishing for centuries. 
 
Home to commercial and subsistence fishing today, Chignik continues to rely upon the salmon returns to the surrounding villages, which are supported by scientists working tirelessly to understand and steward these fish populations.
Read MoreNexSens X3 Data Logger Review
Extreme environments meet extreme design with the NexSens X3 Data Logger . The new logger offers the latest in real-time monitoring technology with wireless communication, a large plug-and-play sensor library and ultra-low power consumption, all in a waterproof marine-grade housing. 
 
 The X3 is built to handle harsh weather, floods, high winds and rough seas, and it stands alone; no additional protective housing needed. With an operating temperature that ranges from -40°C to 70°C, the logger can withstand arctic environments and extreme heat. 
 
 
 
 A conformal coating on the internal circuit board isolates it from moisture and humidity.
Read MoreBuoy-Based Solutions: Strengthening Kentucky’s Emergency Response Efforts
When Kentucky’s Emergency Response Team (ERT) has to act quickly in response to chemical and oil spills in the Commonwealth, they rely on small, easily deployable buoys to collect critical data that help minimize and evaluate damages in environmental emergencies. 
 
With a background in geology, Robert Blair primarily worked with groundwater and got involved sporadically with the ERT during groundwater contamination emergencies. Over time, this involvement led to him joining the ERT as an On-Scene Coordinator and then becoming the branch manager for the team and overall Emergency Response Branch .
Read More