Onset ECH2O EC-5 Soil Moisture Smart Sensor

The Onsite ECH2O EC-5 soil moisture smart sensor offers a smaller measurement volume for use in containers or measuring at multiple depths.

Features

  • Measures a 0.3-liter volume of soil
  • High-frequency (70 MHz) circuit provides good accuracy even in high-salinity and sandy soils
  • Compatible with Onset stand-alone and web-based weather stations
Your Price $199.00
Stock Check Availability  

Overview
The Onsite ECH2O EC-5 soil moisture smart sensor offers a two-tine design for easy installation in in an affordable package. This sensor integrates the field-proven ECH2O EC-5 Sensor and a 12-bit A/D. It provides ±3% accuracy in typical soil conditions, and ±2% accuracy with soil-specific calibration. Readings are provided directly in volumetric water content. This sensor is designed to maintain low sensitivity to salinity and textural effects.

Measurement Range
In soil: 0 to 0.550(m³/m³)
Extended range: -0.401 to 2.574 m³/m³ (full scale)

The sensor is capable of providing readings outside the standard volumetric water content range. This is helpful in diagnosing sensor operation and installation. See User Manual for additional information.

Accuracy: ±0.031 m³/m³ (±3.1%) typical 0 to 50°C (32° to 122°F); ±0.020 m³/m³ (±2%) with soil specific calibration.

This is a system-level accuracy specification and is comprised of the ECH2O probe's accuracy of ±0.03 m³/m³ typical (±0.02 m³/m³ soil specific) plus the smart sensor adapter accuracy of ±0.001 m³/m³ at 25°C (77°F). There are additional temperature accuracy deviations of ±0.003 m³/m³ / °C maximum for the ECH2O probe across operating temperature environment, typical <0.001 m³/m³ / °C. (The temperature dependence of the smart sensor adapter is negligible.)

Resolution: 0.0007 m³/m³ (0.07%)
Soil probe dimensions: 89 x 15 x 1.5 mm (3.5 x 0.62 x 0.06 in.)
Weight: 180 grams (6.3 oz)
Decagon ECH2O probe part No.: EC-5
Sensor operating temperature: 0° to 50°C (32° to 122°F).

While the sensor probe and cable can safely operate at below-freezing temperatures (to -40°C/F) and up to 75°C (167°F), the soil moisture data collected at these extreme temperatures is outside of the sensor's accurate measurement range.

Volume of influence: 0.3 liter (10.1 oz)
Sensor frequency: 70 MHz
Bits per sample: 12
Number of data channels: 1

Note: A single smart sensor-compatible HOBO logger can accommodate 15 data channels and up to 100 m (328 ft) of smart sensor cable (the digital communications portion of the sensor cables)

Measurement averaging option: No
Cable length available: 5 m (16 ft)
Length of Smart Sensor network cable: 0.5 m (1.6 ft)

Questions & Answers
No Questions
Did you find what you were looking for?

Select Options

  Products 0 Item Selected
Image
Part #
Description
Price
Stock
Quantity
Onset ECH2O EC-5 Soil Moisture Smart Sensor
S-SMC-M005
ECH2O EC-5 soil moisture smart sensor for small areas, 5m cable
Your Price $199.00
Check Availability  
  Accessories 0 Item Selected
Notice: At least 1 product is not available to purchase online
×
Multiple Products

have been added to your cart

There are items in your cart.

Cart Subtotal: $xxx.xx

Go to Checkout

In The News

Cal Poly, San Luis Obispo Manages Monitoring Efforts in Morro Bay

California Polytechnic State University, San Luis Obispo (Cal Poly, SLO), has been monitoring Morro Bay for decades, and while the monitoring program has changed over the years, the dedication to monitoring the bay has remained the same. The project started in 2006 as a Packard Foundation-funded initiative to monitor water quality flowing in and out of Morro Bay. The goal at the time was to use the data collected to develop and inform an ecosystem-based management plan in collaboration with the Morro Bay National Estuary Program (MBNEP). Since the estuary was the focus at the time, researchers were monitoring water flowing into the estuary from Chorro Creek and Los Osos Creek.

Read More

Green Water in Green Bay: Using Data Buoys to Monitor the Southern Bay

While the bay of Green Bay has been referred to as the largest freshwater “estuary” in the world, the watershed hosts intensive agriculture and contributes one-third of Lake Michigan’s total phosphorus load.  The Fox River flows into the bay, carrying excess nutrients largely the result of non-point source runoff from the watershed. With a history of deterioration extending well into the last century, the bay ecosystem suffered significant declines in water quality.  This, in turn, stimulated major clean-up and ongoing restoration efforts to improve water quality. Tracking these changes is an important aspect of ecosystem management.

Read More

Cross-Border Sewage Contaminated Flows: Monitoring the Tijuana River

The Tijuana River runs across the US-Mexico boundary, flowing into and throughout southern California, carrying with it nutrients and contaminants throughout the estuary. In recent decades, the flows have been heavily polluted with untreated sewage from the City of Tijuana. The wastewater enters the greater Tijuana River estuary, impacting coastal communities and disrupting the natural environment. In order to better understand these cross-border flows, researchers out of San Diego University sought to monitor the waterway test the capabilities of in-situ sensors to measure the contaminated water. Natalie Mladenov and Trent Biggs were two of the researchers involved in the project, deploying a real-time monitoring system in May of 2021.

Read More