Onset HOBO Dissolved Oxygen Sensor

The dissolved oxygen sensor is an interchangeable sensor that works with HOBO MX800 Series Water Loggers to measure dissolved oxygen (DO) and temperature.

Features

  • User-replaceable DO cap lasts 2 years or more
  • High accuracy measurements, even without calibration
  • Get salinity-adjusted DO directly when used with conductivity sensor (W-CT or W-CTD)
$995.00
Stock 6AVAILABLE

The dissolved oxygen sensor is an interchangeable sensor that works with HOBO MX800 Series Water Loggers to measure dissolved oxygen and temperature. The DO sensor can be attached directly to the fully submersible MX801 model, or attached via cable to the direct read MX802 model, which doesn’t require having to pull the sensor out of the water to download data.

When this sensor is connected to a HOBO MX800 logger that also has a conductivity or CTD sensor attached, the logger can record salinity-adjusted DO directly. With this sensor attached to the HOBO MX802 direct read model, the logger can calculate DO percent saturation directly. When used with fully submersible HOBO MX801 model, a barometric logger data file (from either an MX802 or MX2001 logger) is needed to calculate DO percent saturation, for post-processing in the HOBOconnect app. In waters with changing salinity, the logger must also have a salinity sensor attached or you will need an MX800 salinity data file to get DO percent saturation.

 

  • User-replaceable DO cap lasts 2 years or more
  • High accuracy measurements, even without calibration
  • Get salinity-adjusted DO directly when used with conductivity sensor (W-CT or W-CTD), no need for post-processing
  • Direct DO percent saturation data, no need for post-processing (when used with MX802)
  • Easy calibration with included calibration boot – saves time
  • 1” diameter for use in narrow wells (with cable to MX802 above the well)
  • PVC housing holds up in saltwater
Dissolved Oxygen
Optical Sensor: Dynamic luminescence quenching)
Measurement Range: 0 to 60 mg/L; 0-600% Saturation
Accuracy Out-of-Box: ±0.2 mg/L over the range of 0 to 20 mg/L; ±4% over the range of 20 to 60 mg/L
Accuracy with User Calibration: ±0.1 mg/L over the range of 0 to 20 mg/L; ±2% over the range of 20 to 60 mg/L
Resolution: 0.01 mg/L
Sensor Drift: Accuracy is maintained for 2 years; aside from the effects of fouling
Response Time: To 90% in less than 45 sec
DO Sensor Cap Life: 2 years; after this the sensor will continue operate, but possibly with less accuracy
 
Temperature
Measurement Range: -5 to 50°C (23 to 104°F), non-freezing
Temperature Accuracy: 0.15°C (0.27°F)
Temperature Resolution: 0.01°C (0.04°F)
Response Time: To 90% in less than 15 minutes
Logging Rate: When using this sensor, the maximum logging rate is 1 min
Depth Rating: IP-68, waterproof to 100 m (328 ft) - must be attached to logger and have DO sensor cap installed
Wetted Materials: Black Delrin, PVC, EPDM o-rings, rated for saltwater use
  • (1) Dissolved oxygen sensor
  • (1) Dissolved oxygen sensor cap
  • (1) Calibration boot and sponge
Questions & Answers
No Questions
Did you find what you were looking for?

Select Options

  Products 0 Item Selected
Image
Part #
Description
Price
Stock
Quantity
Onset HOBO Dissolved Oxygen Sensor
W-DO
HOBO dissolved oxygen & temperature sensor
$995.00
6 Available
  Accessories 0 Item Selected
Notice: At least 1 product is not available to purchase online
×
Multiple Products

have been added to your cart

There are items in your cart.

Cart Subtotal: $xxx.xx

Go to Checkout

In The News

Monitoring Meadowbrook Creek: Real-Time Data Collection in an Urban Creek

Meadowbrook Creek in Syracuse, New York, has been monitored by Syracuse University (SU) faculty and students for over a decade. Originally established by Dr. Laura Lautz in 2012, the early years of the program focused on collecting grab water samples for laboratory analysis and evaluating the impact of urban land use, human activities, and natural processes on water resources. Tao Wen , an Assistant Professor in SU’s Department of Earth and Environmental Sciences, took over the program in 2020 and upgraded the existing systems to include 4G modems that allowed for real-time data viewing. [caption id="attachment_39339" align="alignnone" width="940"] An overview of the Fellows Ave monitoring station along Meadowbrook Creek.

Read More

Lancaster County Makes the Switch to Real-Time Water Quality Monitoring Systems

Continuous data collection in Lancaster County, Pennsylvania, started about 5 years ago, and the county will be making a major upgrade over the next year—switching from relying solely on the internal storage of water quality sondes to telemetry units that enable real-time data viewing. [caption id="attachment_39295" align="alignnone" width="940"] The first telemetry unit was installed at LCCD along Little Conestoga Creek. (Credit: Tyler Keefer / LCCD) [/caption] Telling Lancaster County's Story Through Data Since the Lancaster County Conservation District started monitoring county waterways, the goal has remained the same, according to Amanda Goldsmith, Watershed Specialist for the Watershed Department.

Read More

From Florida to the World: How a Smithsonian Research Station is Bridging Gaps in Marine Biology

In the early 2000s, along the coast of northern California, where the redwoods dominate the forests, and the Pacific Ocean shapes shorelines, a Humboldt University undergraduate student took the first steps into a lifelong love of marine biology. Dean Janiak accepted an invitation to help a graduate student with fieldwork in rocky coastal tide pools, and so began a journey that led him from California to Connecticut to Florida and eventually to the world, where he has facilitated research in communities across the globe. While finishing up his masters of Oceanography from the University of Connecticut, Janiak continued researching fouling communities–marine life that live on hard, often artificial surfaces such as docks–at the Smithsonian Environmental Research Center.

Read More