Onset HOBO Salt Water Conductivity Logger

The Onset HOBO U24-002-C is a cost-effective data logger for measuring salinity, conductivity and temperature in saltwater environments with relatively small changes in salinity.

Features

  • Non-contact sensor provides long life
  • Provides easy access to sensor for cleaning and shedding air bubbles
  • Requires HOBOware Pro Software and optic base station or waterproof shuttle
$985.00
Stock Check Availability  

Overview
The Onset HOBO U24-002-C is a cost-effective data logger for measuring salinity, conductivity and temperature in saltwater environments with relatively small changes in salinity (±5,000 μS/cm) such as saltwater bays, or to detect salinity events such as upwelling, rainstorm, and discharge events. Data from the logger can be used with data from the HOBO U26 Dissolved Oxygen Logger for monitoring percent dissolved oxygen saturation.

Note: When monitoring salinity in waters with more than ±5,000 uS/cm variation, refer to the accuracy shown in Plot C in the product specifications to determine if the accuracy is acceptable for your needs. Monthly field calibration readings are typically required to achieve the best accuracy.

Measurements: Actual Conductivity, Temperature, Specific Conductance at 25C (calculated), Salinity (calculated using PSS-78, the Practical Salinity Scale 1978)

Conductivity Measurement Range (Calibrated Range)
High range: 5000 to 55,000 uS/cm
Low range: 100 to 10,000 uS/cm
Over the range of 5 to 35C (41 to 95F)

Temperature Measurement Range: 5 to 35C (41 to 95F)

Specific Conductance Accuracy (in Calibrated Range using Conductivity Assistant and Calibration Measurements)
Low range: 3% of reading or 50 µS/cm, whichever is greater
High range: 5% of reading, in waters within a range of ±3,000 µS/cm; waters with greater variation can have substantially greater error (see Plot C)
Conductivity Resolution: 2 uS/cm
Temperature Accuracy: 0.1°C (0.2°F) at 25°C (77°F)
Temperature Resolution: 0.01°C (0.02°F)
Conductivity drift: Up to 12% sensor drift per month, exclusive of drift from fouling. Monthly start- and end-point calibration should be used with the HOBOware Conductivity Assistant to achieve the specified Specific Conductance accuracy.
Response time: 1 second to 90% of change (in water)
Operating range: -2 to 36C (28 to 97F) – non-freezing
Memory: 18,500 temperature and conductivity measurements when using one conductivity range; 11,500 sets of measurements when using both conductivity ranges (64 KB total memory)
Sample rate: 1 second to 18 hrs, fixed or multiple-rate sampling with up to 8 user-defined sampling intervals
Clock accuracy: +/- 1 minute per month
Battery life: 3 years (@ 1 min logging)
Maximum depth: 70 m (225')
Weight: 193 gm (6.82 ounces), buoyancy in freshwater: -59.8 gm (-2.11 ounces)
Size: 3.18 cm diameter x 16.5 cm, with 6.3 mm mounting hole (1.25" diameter x 6.5", ¼" hole)
Wetted housing materials: Delrin housing, epoxy, stainless steel retaining ring, polypropylene, Buna rubber O-ring, titanium pentoxide (inert coating over sensor) – all materials are suitable for long-term use in saltwater.

  • HOBO U24-002-C Conductivity Data Logger
  • Communications window protective cap
Questions & Answers
No Questions
Did you find what you were looking for?

Select Options

  Products 0 Item Selected
Image
Part #
Description
Price
Stock
Quantity
Onset HOBO Salt Water Conductivity Logger
U24-002-C
HOBO salt water conductivity & temperature logger, 100 to 55,000 uS/cm range
$985.00
Check Availability  
  Accessories 0 Item Selected
Notice: At least 1 product is not available to purchase online
×
Multiple Products

have been added to your cart

There are items in your cart.

Cart Subtotal: $xxx.xx

Go to Checkout

In The News

Cal Poly, San Luis Obispo Manages Monitoring Efforts in Morro Bay

California Polytechnic State University, San Luis Obispo (Cal Poly, SLO), has been monitoring Morro Bay for decades, and while the monitoring program has changed over the years, the dedication to monitoring the bay has remained the same. The project started in 2006 as a Packard Foundation-funded initiative to monitor water quality flowing in and out of Morro Bay. The goal at the time was to use the data collected to develop and inform an ecosystem-based management plan in collaboration with the Morro Bay National Estuary Program (MBNEP). Since the estuary was the focus at the time, researchers were monitoring water flowing into the estuary from Chorro Creek and Los Osos Creek.

Read More

Green Water in Green Bay: Using Data Buoys to Monitor the Southern Bay

While the bay of Green Bay has been referred to as the largest freshwater “estuary” in the world, the watershed hosts intensive agriculture and contributes one-third of Lake Michigan’s total phosphorus load.  The Fox River flows into the bay, carrying excess nutrients largely the result of non-point source runoff from the watershed. With a history of deterioration extending well into the last century, the bay ecosystem suffered significant declines in water quality.  This, in turn, stimulated major clean-up and ongoing restoration efforts to improve water quality. Tracking these changes is an important aspect of ecosystem management.

Read More

Cross-Border Sewage Contaminated Flows: Monitoring the Tijuana River

The Tijuana River runs across the US-Mexico boundary, flowing into and throughout southern California, carrying with it nutrients and contaminants throughout the estuary. In recent decades, the flows have been heavily polluted with untreated sewage from the City of Tijuana. The wastewater enters the greater Tijuana River estuary, impacting coastal communities and disrupting the natural environment. In order to better understand these cross-border flows, researchers out of San Diego University sought to monitor the waterway test the capabilities of in-situ sensors to measure the contaminated water. Natalie Mladenov and Trent Biggs were two of the researchers involved in the project, deploying a real-time monitoring system in May of 2021.

Read More