PME C-FLUOR Logger
Features
- Records sensor measurement, time, date and logger battery voltage
- Sampling rates can be adjusted by the user, with a minimum time interval of 5 seconds
- Data are offloaded from the logger to a computer via a standard USB cable
- Expedited repair and warranty service
- Lifetime technical support
- More
The C-FLUOR Logger connects to one Turner Designs C-FLUOR sensor. The logger records measurements internally at a variety of possible sample rates. Data are offloaded from the logger to a computer via a standard USB cable. The logger is completely self-contained and waterproof. Internal power allows the logger to operate for roughly 200,000 samples. Each recorded sample includes the sensor measurement, time, date, and logger battery voltage. The sensor is removable on the C-FLUOR Logger, to enable use of multiple sensors for different applications.
Design, construction and material choice have been specifically developed to create the durable C-FLUOR Logger. The outer case is constructed from Delrin, a hard plastic material that will withstand your most challenging environment. All internal circuitry and sensor components have been specifically designed to fit on the logger spine. The batteries, SD card, on/off switch, circuit board and other components are attached to a chem film aluminum spine.
In The News
From Florida to the World: How a Smithsonian Research Station is Bridging Gaps in Marine Biology
In the early 2000s, along the coast of northern California, where the redwoods dominate the forests, and the Pacific Ocean shapes shorelines, a Humboldt Univerisity undergraduate student took the first steps into a lifelong love of marine biology. 
 
Dean Janiak accepted an invitation to help a graduate student with fieldwork in rocky coastal tide pools, and so began a journey that led him from California to Connecticut to Florida and eventually to the world, where he has facilitated research in communities across the globe. 
 
While finishing up his masters of Oceanography from the University of Connecticut, Janiak continued researching fouling communities–marine life that live on hard, often artificial surfaces such as docks–at the Smithsonian Environmental Research Center.
Read MoreWatershed Stewardship in Minnesota: Protecting Valley Creek in the Land of 10,000 Lakes
The Saint Croix Watershed is home to dozens of lakes, rivers, and streams that host an abundance of aquatic life from its tributaries. Valley Creek, a tributary of the St. Croix River, is a designated trout stream and while it is a pristine waterway, ongoing monitoring and stewardship establish a baseline of conditions and protect the creek. 
 
Don Wendel and Dllona Clendenen, Minnesota Master Naturalists, Liberal Arts majors, and retired college teachers, are two members of the wetlands research team based out of the Science Museum of Minnesota’s St. Croix Watershed Research Station that monitors Valley Creek throughout the year.
Read MoreFrom Pans to Buoys: Advancing Reservoir Evaporation Rate Monitoring in Texas
In warmer climates like Texas, high reservoir evaporation rates can lead to declines in water level and water availability during droughts, making monitoring essential in order to ensure water security during times of scarcity. 
 
According to the Texas Water Development Board (TWDB), evaporation rates in Texas were previously based on data collected from a sparse network of Class A evaporation stations, dating back to the 1960s. These pans were stationed near reservoirs and still remain a widely accepted standardized approach to measuring evaporation rates on land. 
 
Monthly pan-to-lake coefficients were developed in the 1980s to connect the data collected from the pans to known lake conditions, extrapolating evaporation rates of the lakes using the pan data.
Read More