PME miniPAR Logger

The miniPAR logger is a portable, submersible instrument for measuring diffused sunlight through water, or PAR (Photosynthetically Active Radiation).

Features

  • Submersible up to 100 meters
  • PAR, orientation, and temperature sensors
  • Anti-fouling wiper available
Your Price Call
Stock Check Availability  

Overview
The PME minPAR contains a tilt sensor to ensure proper orientation and a temperature sensor. Data is recorded on an internal SD card. The miniPAR is powered by 2 AA batteries and can be fitted with an anti-fouling miniWIPER to protect long-term data accuracy.

Measuring Photosynthetically Active Radiation
The miniPAR is fitted with an LI-192 Underwater Quantum Sensor manufactured by LI-COR. The sensor uses a silicon photodiode and glass optical filters to create a uniform sensitivity to light wavelengths in the 400-700nm range. It measures PAR from all angles in one hemisphere. PAR is a key indicator for understanding nutrient loading, photosynthesis, algae blooms, or other biological, chemical, or physical processes.

Battery Powered
PME is confident that the logger can continue collecting measurements for over one year before the batteries need to be replaced at a sampling interval of one minute. The miniPAR is constructed from strong Delrin plastic that does not easily crack or break.

Embedded Tilt Sensor
The miniPAR is unique among similar loggers in that it contains a tilt sensor to measure the orientation of the device. Since PAR measurement accuracy is dependent upon the sensor being pointed toward the water surface, the tilt sensor will alert the user if the sensor is rotated in a particular direction.

PME Software Included
PME software is provided with every miniPAR logger and can be found on the included SD card when it is connected to a computer. The software creates visual plots to read PAR measurements easily and allows the user to set the internal clock and sample rate.

Questions & Answers
Is the PME miniPAR logger compatible with the LI-COR LI-193 underwater spherical PAR sensor for unattended deployment?
No, the LI-193 is not compatible with the miniPAR logger. Typically, these sensors need to be wiped during extended deployments, making the spherical sensors impractical for those types of applications.
Did you find what you were looking for?

Select Options

  Products 0 Item Selected
Image
Part #
Description
Price
Stock
Quantity
PME miniPAR Logger
7530
miniPAR photosynthetically active radiation, tilt & temperature logger
Request Quote
Check Availability  
  Accessories 0 Item Selected
Notice: At least 1 product is not available to purchase online
×
Multiple Products

have been added to your cart

There are items in your cart.

Cart Subtotal: $xxx.xx

Go to Checkout

In The News

Climate Change and Microplastics: Monitoring Lake Champlain

Most people go to Lake Champlain for its exceptional views and thrilling boating, but it’s also home to a wide variety of interesting aquatic research projects. From studying microplastics to thermal dynamics of the lake, Timothy Mihuc, director of the Lake Champlain Research Institute (LCRI) at the State University of New York at Plattsburgh (SUNY Plattsburgh), has spent his career studying aquatic ecosystems.  As an aquatic biologist, he’s the main investigator on Lake Champlain’s research studies while also managing their grants, employees, and their hands-on buoy work.  Over the years, LCRI has received a number of environmental grants that aid in its monitoring research.

Read More

Current Monitoring after the Francis Scott Key Bridge Collapse

On March 26th, according to The Baltimore Sun , a 984-foot, 112,000-ton Dali lost propulsion and collided with a support column of the Francis Scott Key Bridge, collapsing the structure. Soon after the event, search and rescue, salvage crews, and other emergency responders were mobilized after the collision. As salvage efforts progressed in early April, NOAA’s Center for Operational Oceanographic Products and Services (CO-OPS) responded to a request for real-time tidal currents data and deployed a current monitoring buoy—CURBY (Currents Real-time BuoY)—into the Patapsco River north of the Francis Scott Key Bridge.

Read More

Soundscapes of the Solar Eclipse: Citizen Science Supporting National Research

On April 8, 2024, millions of people around the world had their eyes glued to the sky to witness a historic cosmic event. The total solar eclipse captured the headlines and the minds of many who became eager to gaze at the heavens as the sky went dark for a few minutes. However, not everyone used their sense of sight during the eclipse, some were listening to the sounds of the natural world around them as the light faded from above. The Eclipse Soundscape Project is a NASA-funded citizen science project that focuses on studying how the annular solar eclipse on October 14, 2023, and the April 8, 2024 total solar eclipse impacted life on Earth.  The project revisits an initiative from the 1930s that showed animals and insects are affected by solar eclipses.

Read More