Sequoia LISST-Tau Transmissometer

LISST-Tau is a high-precision transmissometer for underwater vehicles, profiling packages, CTDs, and remote monitoring systems.

Features

  • Measures optical transmission and beam attenuation
  • RS-232 and analog real-time outputs
  • Integrated temperature compensation & ambient light rejection
Your Price Call
Stock Check Availability  

Overview
LISST-Tau is a high-precision transmissometer for underwater vehicles, profiling packages, CTDs, and other systems. With high-quality optics and a carefully selected LED source, it transmits a collimated beam through the water, and precisely measures the light transmitted through its 15 cm path. Light modulation with synchronous detection rejects ambient light, while oversampling and averaging yield better than 16-bit resolution. LISST-Tau’s digital controller applies calibration coefficients, corrects for temperature effects, and transmits data from both digital and analog outputs. Included software provides real-time display of data, and functions for checking and updating pure-water calibrations. An optional flow-through chamber simplifies calibrations and experiments. LISST-Tau advances the state of the art for in-situ transmissometers.

Remote Monitoring
The LISST-Tau transmissometer offers a plug-and-play interface to the NexSens X3 data loggers and telemetry systems. The X3 is available for pole-mount/buoy-based deployments with solar charging or connected to the X3-SUB submersible data logger with alkaline battery pack for subsurface deployments.

Parameters Measured

  • Optical transmission
  • Beam attenuation

Operating Ranges and Stability

  • Operational temperature range: -3 °C to 40 °C
  • Storage temperature range: -20 °C to 60 °C
  • Beam attenuation range: ~0 m-1 to 30 m-1
  • Linearity (concentration): >99 %
  • Short-term stability (typical standard deviation over 1 minute)
    • Transmission: 0.003 %FS (Green) / 0.005% (Red)
    • Beam attenuation: 0.0002 m-1 (Green) / 0.0004 m-1 (Red)
  • Long-term stability (6 hr test)
    • Transmission: ~0.003 %FS/hr
    • Beam attenuation: ~0.0002 m-1∙hr-1

Technology

  • Optical path length: 15 cm
  • Source wavelength: ~532 nm (Green) or ~650 nm (Red) LED
  • Source spectral bandwidth: <10 nm FWHM
  • Acceptance angle (half angle, in water): 1.0 °
  • Optical transmission @ 16-bit resolution

Mechanical and Electrical

  • Dimensions [Ø x L]: 5.1 cm x 40.6 cm (2.00″ x 16″)
  • Weight [air / seawater]: 1.140 kg / 0.585 kg (2.5 lbs / 1.3 lbs)
  • Depth rating: 2,000 m
  • Sampling rate: 1 Hz
  • External power input: 7 VDC to 25 VDC
  • Current drain @ 12V: 42 mA average during sampling
  • Connector: SubConn MCBH6M
  • LISST-Tau transmissometer
  • LISST-Tau 2-meter integrated communication and external power USB cable
  • Windows software for real-time display of data, and functions for checking and updating pure-water calibrations
  • Shipping case
Questions & Answers
No Questions
Did you find what you were looking for?

Select Options

  Products 0 Item Selected
Image
Part #
Description
Price
Stock
Quantity
Sequoia LISST-Tau Transmissometer
SEQ-FP-LTAU-532NM
LISST-Tau high-precision transmissometer, 532 nm (green) LED source
Request Quote
Check Availability  
Sequoia LISST-Tau Transmissometer
SEQ-FP-LTAU-650NM
LISST-Tau high-precision transmissometer, 650 nm (red) LED source
Request Quote
Check Availability  
  Accessories 0 Item Selected
Notice: At least 1 product is not available to purchase online
×
Multiple Products

have been added to your cart

There are items in your cart.

Cart Subtotal: $xxx.xx

Go to Checkout

In The News

Monitoring OAE Efforts in Halifax: Fighting Climate Change with Emerging mCDR Strategies

Marine carbon dioxide (CO 2 ) removal (mCDR) is an emerging strategy that aims to fight climate change by taking advantage of the carbon capture potential of our oceans. There are multiple types of mCDR approaches being evaluated globally, one of which is ocean alkalinity enhancement (OAE). According to NOAA , OAE aims to increase the pH of water by either adding alkaline material to ocean surface waters or by removing acid from seawater. Due to the change in acidity, the chemistry of seawater changes, making it capable of absorbing greater volumes of CO 2 .

Read More

Lancaster County Makes the Switch to Real-Time Water Quality Monitoring Systems

Continuous data collection in Lancaster County, Pennsylvania, started about 5 years ago, and the county will be making a major upgrade over the next year—switching from relying solely on the internal storage of water quality sondes to telemetry units that enable real-time data viewing. [caption id="attachment_39295" align="alignnone" width="940"] The first telemetry unit was installed at LCCD along Little Conestoga Creek. (Credit: Tyler Keefer / LCCD) [/caption] Telling Lancaster County's Story Through Data Since the Lancaster County Conservation District started monitoring county waterways, the goal has remained the same, according to Amanda Goldsmith, Watershed Specialist for the Watershed Department.

Read More

From Florida to the World: How a Smithsonian Research Station is Bridging Gaps in Marine Biology

In the early 2000s, along the coast of northern California, where the redwoods dominate the forests, and the Pacific Ocean shapes shorelines, a Humboldt University undergraduate student took the first steps into a lifelong love of marine biology. Dean Janiak accepted an invitation to help a graduate student with fieldwork in rocky coastal tide pools, and so began a journey that led him from California to Connecticut to Florida and eventually to the world, where he has facilitated research in communities across the globe. While finishing up his masters of Oceanography from the University of Connecticut, Janiak continued researching fouling communities–marine life that live on hard, often artificial surfaces such as docks–at the Smithsonian Environmental Research Center.

Read More