SonTek FlowTracker2 ADV Probes

The Sontek FlowTracker2 ADV probe can be used in the field with the handheld display, or it can be used in the lab with direct PC connection.

Features

  • Versatile probe can be used in the lab or field
  • Optional integrated pressure sensor for depth data
  • Available extension cables in 1.5m, 3.5m, and 8.5m lengths
Your Price Call
Stock Check Availability  

Overview
The Sontek FlowTracker2 ADV probe can be used in the field with the handheld display, or it can be used in the lab with direct PC connection. The ADV’s acoustic probe and processing electronics are housed in one small, lightweight, easily maneuverable unit, and the acoustic head has an optional, integrated pressure (depth) sensor.

Mechanics
Depth data are even correctable for dynamic pressure (Bernoulli) and altitude effects using SonTek’s patent-pending method. Setup of the probe and PC software is simple and mistake-proof. Just connect the cables between the probe and a laboratory PC or laptop, check a few settings, and press the “Start Logging” button. Data are output directly to a .CSV file that is immediately ready for use in the project, model, or database as required.

Probe Specifications

Velocity Range ±0.001 to 4.0 m/s (0.003 to 13 ft/s)
Velocity Resolution 0.0001 m/s (0.0003 ft/s)
Velocity Accuracy +/1% of measured velocity, +/- 0.25cm/s
Acoustic Frequency 10.0 MHz
Sampling Volume Location 10 cm (3.93 in) from the center transducer
Minimum Depth 0.02 m (0.79 in)
Depth Measurement Range 0 to 10m (0 to 32.81ft)
Depth Measurement Resolution 0.001m (0.003ft)
Depth Sensor Accuracy +/- 0.1% of FS (temperature compensated over full operating range)
  +/- 0.05% Static (steady-state at 25°C)
  Additionally compensated for real-time
water velocity, temperature, salinity, and altitude.
Temperature Sensor Resolution: 0.01° C, Accuracy: 0.1° C
Tilt Sensor Resolution: 0.001°, Accuracy: 1.0° 
Communication Protocol RS-232
Operating/Storage Temperature -20° C to 50° C (-4° F to 122° F)
Probe Head Dimensions (L)13.3 cm (5.22 in)
(W) 6.1 cm (2.39 in)
(H) 2.3 cm (0.90 in)
Standard Cable Length 1.5 m (4.92 ft)
Weight in Air 0.90 kg (1.98 lbs)
Weight in Water 0.30 kg (0.66 lbs)
Questions & Answers
What is the purpose of the optional depth sensor?
During a discharge measurement, a typical user will read the water depth from wading rod markings. With a the integrated depth sensor, water depth can be measured automatically, reducing human error in the field and providing increased accuracy.
Did you find what you were looking for?

Select Options

  Products 0 Item Selected
Image
Part #
Description
Price
Stock
Quantity
SonTek FlowTracker2 ADV Probes
FT2-2D
FlowTracker2 probe assembly with 2D side-looking 10 MHz ADV probe, 1.5m cable
Request Quote
Check Availability  
SonTek FlowTracker2 ADV Probes
FT2-2D3D
FlowTracker2 probe assembly with 2D/3D side-looking 10 MHz ADV probe, 1.5m cable
Request Quote
Check Availability  
SonTek FlowTracker2 ADV Probes
FT2-2D-P
FlowTracker2 probe assembly with integrated depth sensor & 2D side-looking 10 MHz ADV probe, 1.5m cable
Request Quote
Check Availability  
SonTek FlowTracker2 ADV Probes
FT2-2D3D-P
FlowTracker2 probe assembly with integrated depth sensor & 2D/3D side-looking 10 MHz ADV probe, 1.5m cable
Request Quote
Check Availability  
  Accessories 0 Item Selected
Notice: At least 1 product is not available to purchase online
×
Multiple Products

have been added to your cart

There are items in your cart.

Cart Subtotal: $xxx.xx

Go to Checkout

In The News

Cal Poly, San Luis Obispo Manages Monitoring Efforts in Morro Bay

California Polytechnic State University, San Luis Obispo (Cal Poly, SLO), has been monitoring Morro Bay for decades, and while the monitoring program has changed over the years, the dedication to monitoring the bay has remained the same. The project started in 2006 as a Packard Foundation-funded initiative to monitor water quality flowing in and out of Morro Bay. The goal at the time was to use the data collected to develop and inform an ecosystem-based management plan in collaboration with the Morro Bay National Estuary Program (MBNEP). Since the estuary was the focus at the time, researchers were monitoring water flowing into the estuary from Chorro Creek and Los Osos Creek.

Read More

Green Water in Green Bay: Using Data Buoys to Monitor the Southern Bay

While the bay of Green Bay has been referred to as the largest freshwater “estuary” in the world, the watershed hosts intensive agriculture and contributes one-third of Lake Michigan’s total phosphorus load.  The Fox River flows into the bay, carrying excess nutrients largely the result of non-point source runoff from the watershed. With a history of deterioration extending well into the last century, the bay ecosystem suffered significant declines in water quality.  This, in turn, stimulated major clean-up and ongoing restoration efforts to improve water quality. Tracking these changes is an important aspect of ecosystem management.

Read More

Cross-Border Sewage Contaminated Flows: Monitoring the Tijuana River

The Tijuana River runs across the US-Mexico boundary, flowing into and throughout southern California, carrying with it nutrients and contaminants throughout the estuary. In recent decades, the flows have been heavily polluted with untreated sewage from the City of Tijuana. The wastewater enters the greater Tijuana River estuary, impacting coastal communities and disrupting the natural environment. In order to better understand these cross-border flows, researchers out of San Diego University sought to monitor the waterway test the capabilities of in-situ sensors to measure the contaminated water. Natalie Mladenov and Trent Biggs were two of the researchers involved in the project, deploying a real-time monitoring system in May of 2021.

Read More