SonTek FlowTracker2 Handheld ADV

The SonTek FlowTracker2 (FT2) handheld Acoustic Doppler Velocimeter (ADV) is a wading discharge measurement instrument that is handheld, portable and precise.

Features

  • Improved ADV acoustics: faster pinging, lower noise and better standard error
  • Embedded GPS for geo-referencing with automatic or manual fixes
  • Set up and save templates—no need to re-enter data every time you visit a site
Your Price Call
Stock Check Availability  

Overview
The SonTek FlowTracker2 (FT2) handheld Acoustic Doppler Velocimeter (ADV) is a wading discharge measurement instrument that is handheld, portable and precise. 2-D data in the horizontal plane (2D/3D option available) allows the most comprehensive QC and understanding about flow conditions. User calibration is never required.

Benefits

  • Embedded GPS for georeferencing with automatic or manual fixes
  • Improved ADV acoustics: faster pinging, lower noise and better standard error
  • Battery life icon on the screen at all times. Pre-load the spare cartridge and replace, even mid-measurement, with no data loss
  • Detachable probe with extension cables to customize cable length up to 10m
  • Probes and handhelds are interchangeable—flexibility within agency teams and when sending equipment for service
  • Set up and save templates—no need to re-enter data every time you visit a site
  • Bluetooth or direct USB interface with PC
  • Audio prompts

 

Handheld Specifications

Input Battery Voltage 8 - 12 VDC
Power Supply 8 X AA Batteries
Battery Life 11 hours continuous use, typical settings1
Power Consumption 1 W (Average)
GPS: H. Position Accuracy Up to 2.5 m (8.2 ft) nominal2
GPS: Frequency L1 (1.575 MHz)
SBAS compensation (WAAS, EGNOS, MSAS, GAGAN)
LCD Resolution 320 X 240 TFT Transmissive
Bluetooth Class 2, Range = 10 m (33 ft) nominal
USB Micro USB, IP-67
Battery Power to Probe 8 - 12 VDC
Data Transfer RS-232
Data Storage 16 GB. Up to 10k discharge measurements
Up to 10 million velocity samples
Operating Temperature Alkaline Batteries: -20° to 45°C (-4°F to 113°F)
NiMH: -20° to 50°C (-4°F to 122°F)
Storage Temperature -30° to 70° C (-22° F to 158° F)3
Waterproof Rating IP-67 (1m submersible)
Handheld Dimensions (L)10.4 cm (4.1 in)
(W) 6.4 cm (2.5 in)
(H) 23.7cm (9.3 in)
Weight in Air 0.75 kg (1.65 lbs)
Weight in Water -0.25 kg (-0.55 lbs)

 

Probe Specifications

Velocity Range ±0.001 to 4.0 m/s (0.003 to 13 ft/s)
Velocity Resolution 0.0001 m/s (0.0003 ft/s)
Velocity Accuracy +/1% of measured velocity, +/- 0.25cm/s
Acoustic Frequency 10.0 MHz
Sampling Volume Location 10 cm (3.93 in) from the center transducer
Minimum Depth 0.02 m (0.79 in)
Depth Measurement Range 0 to 10m (0 to 32.81ft)
Depth Measurement Resolution 0.001m (0.003ft)
Depth Sensor Accuracy +/- 0.1% of FS (temperature compensated over full operating range)
  +/- 0.05% Static (steady-state at 25°C)
  Additionally compensated for real-time
water velocity, temperature, salinity, and altitude.
Temperature Sensor Resolution: 0.01° C, Accuracy: 0.1° C
Tilt Sensor Resolution: 0.001°, Accuracy: 1.0° 
Communication Protocol RS-232
Operating/Storage Temperature -20° C to 50° C (-4° F to 122° F)
Probe Head Dimensions (L)13.3 cm (5.22 in)
(W) 6.1 cm (2.39 in)
(H) 2.3 cm (0.90 in)
Standard Cable Length 1.5 m (4.92 ft)
Weight in Air 0.90 kg (1.98 lbs)
Weight in Water 0.30 kg (0.66 lbs)
  • (1) FlowTracker2 handheld display unit
  • (1) USB interface cable
  • (1) Spare battery cartridge
  • (8) AA alkaline batteries
  • (1) Shipping case
Questions & Answers
What is the purpose of the optional depth sensor?
During a discharge measurement, a typical user will read the water depth from wading rod markings. With a the integrated depth sensor, water depth can be measured automatically, reducing human error in the field and providing increased accuracy.
Did you find what you were looking for?

Select Options

  Products 0 Item Selected
Image
Part #
Description
Price
Stock
Quantity
SonTek FlowTracker2 Handheld ADV
FT2-HH
FlowTracker2 handheld display (cable/sensor sold separately)
Request Quote
Check Availability  
  Accessories 0 Item Selected
Notice: At least 1 product is not available to purchase online
×
Multiple Products

have been added to your cart

There are items in your cart.

Cart Subtotal: $xxx.xx

Go to Checkout

In The News

From Pans to Buoys: Advancing Reservoir Evaporation Rate Monitoring in Texas

In warmer climates like Texas, high reservoir evaporation rates can lead to declines in water level and water availability during droughts, making monitoring essential in order to ensure water security during times of scarcity. According to the Texas Water Development Board (TWDB), evaporation rates in Texas were previously based on data collected from a sparse network of Class A evaporation stations, dating back to the 1960s. These pans were stationed near reservoirs and still remain a widely accepted standardized approach to measuring evaporation rates on land. Monthly pan-to-lake coefficients were developed in the 1980s to connect the data collected from the pans to known lake conditions, extrapolating evaporation rates of the lakes using the pan data.

Read More

A Drop in the Ocean: Restoring London’s Tidal Thames

The United Kingdom has grappled with wastewater management problems for decades. Although sewage treatment in the 20th century allowed many rivers, including the tidal Thames, to have healthy fish populations, combined sewer overflows into rivers–most commonly during heavy rainfall–affected water quality and occasionally even killed fish. Problems reached a head in 2012 when multiple infractions of European urban wastewater treatment laws threatened costly fines, on top of the environmental cost of repeated sewage spills into British rivers. Fast forward to 2025, and after a decade of construction work, London’s Thames Tideway Tunnel , affectionately dubbed the “super sewer”, is now fully activated and ready for testing.

Read More

Have You Heard? AI Buoys Revolutionizing Marine Mammal Monitoring in Whangārei Harbor, New Zealand

In one history, Whangārei Harbor, nestled in the lush hills of New Zealand’s North Island, gets its name from the Māori, “waiting for the breastbone of the whale.” It seems fitting, then, that it’s now home to state-of-the-art acoustic monitoring buoys listening for marine mammals around the clock. In September 2024, a team from Auckland-based underwater acoustics firm Cetaware Ltd installed NexSens buoys in Northport, a major commercial port at the entrance to the Whangārei Harbor. The first buoys to be installed by Cetaware in a permanent setting running 24/7, they use real-time artificial intelligence (AI) models to passively sense Delphinidae–from common dolphins to orcas. Dr.

Read More