SonTek-SL Series Side-Looking Doppler Current Meters

The SonTek-SL Series side-looking Doppler current meters are an advanced instrument for water velocity measurement and flow calculations in streams, rivers, and other water bodies.

Features

  • Accurate & reliable water velocity, level, & discharge measurements
  • Measurements are made in a remote sampling volume free from flow distortion
  • 3G model offers 128-cells for high-resolution and detailed profiles
Your Price Call
Stock Check Availability  

Overview
The SonTek-SL (affectionately known as the Side-Looker or "SL") has earned worldwide acceptance as a long-term monitoring solution. Now, with two new (3G) models turbo-charged by the proprietary SmartPulseHD, the SonTek-SL features accessories, mounting options, software, and a variety of integration formats to ensure it fits the desired application.

Design
Designed specifically for side mounting on bridges, canal walls, or riverbanks, the SL's sleek, low-profile housing makes installation easy. With three models to choose from, the SL can be used in wide or narrow channels. Ultra narrow beam widths combined with unmatched side lobe suppression provide the superior acoustic directivity necessary for achieving maximum horizontal range free of interference from surface or bottom boundaries.

Mechanics
First time users can collect test data within minutes of receiving the SonTek-SL. Deployments require only a few minutes to configure the SL and start collecting data. This system provides the highest quality Doppler velocity data without requiring the user to become an expert on Doppler technology.

Benefits

  • SmartPulseHD (3G models only): An intelligent algorithm that looks at water depth, profiling range, velocity, and turbulence, and then acoustically adapts to those conditions using pulse-coherent, broadband, and incoherent techniques. Best data possible under any condition. High-def cell sizes down to 4 cm.
  • Compact, Hydrodynamic Design: Incredibly lightweight and easy to transport and mount. Slim shape is easy to maintain, stays clean, increases available sample area, and fits into more places.
  • Water Velocity Profiling: Customizeable, flexible setup options to suit a variety of applications. 3G models offer 128-cells for high-resolution and detailed profiles.
  • Acoustic-Pressure "Duo" Water Level (3G models only): Not only redundant sources of water level, the acoustic vertical beam and pressure sensor continually self-check, and pressure data are auto-corrected to keep atmospheric offset negligible.
  • Versatile, Easy Mounting: Easy-access side mounting reduces concerns over personnel safety, lowers operational cost by avoiding divers and boats, avoids interruption in facility operations, and avoids interruption in data and water delivery to clients and stakeholders.
  • Wave Spectra Option: Integrated pressure sensor calculates and outputs wave-height and period, in real-time.
Questions & Answers
Can this calculate flow internally, or does this need to be performed in post-processing?
The SonTek-SL Series Side-Looking Doppler Current Meters can calculate flow as long as the channel shape data (area) is entered in the Software. With this information, the instrument can automatically log and/or transmit flow data.
Did you find what you were looking for?

Select Options

  Products 0 Item Selected
Image
Part #
Description
Price
Stock
Quantity
SonTek Argonaut-SL 3.0 MHz System
SL1500-3G
SL1500-3G side-looking real-time acoustic Doppler current meter/flowmeter, 1500 kHz
Request Quote
Check Availability  
SonTek Argonaut-SL 0.5 MHz System
SL500-232
SL500 side-looking real-time acoustic Doppler current meter/flowmeter, 500 kHz
Request Quote
Check Availability  
  Accessories 0 Item Selected
Notice: At least 1 product is not available to purchase online
×
Multiple Products

have been added to your cart

There are items in your cart.

Cart Subtotal: $xxx.xx

Go to Checkout

In The News

Cal Poly, San Luis Obispo Manages Monitoring Efforts in Morro Bay

California Polytechnic State University, San Luis Obispo (Cal Poly, SLO), has been monitoring Morro Bay for decades, and while the monitoring program has changed over the years, the dedication to monitoring the bay has remained the same. The project started in 2006 as a Packard Foundation-funded initiative to monitor water quality flowing in and out of Morro Bay. The goal at the time was to use the data collected to develop and inform an ecosystem-based management plan in collaboration with the Morro Bay National Estuary Program (MBNEP). Since the estuary was the focus at the time, researchers were monitoring water flowing into the estuary from Chorro Creek and Los Osos Creek.

Read More

Green Water in Green Bay: Using Data Buoys to Monitor the Southern Bay

While the bay of Green Bay has been referred to as the largest freshwater “estuary” in the world, the watershed hosts intensive agriculture and contributes one-third of Lake Michigan’s total phosphorus load.  The Fox River flows into the bay, carrying excess nutrients largely the result of non-point source runoff from the watershed. With a history of deterioration extending well into the last century, the bay ecosystem suffered significant declines in water quality.  This, in turn, stimulated major clean-up and ongoing restoration efforts to improve water quality. Tracking these changes is an important aspect of ecosystem management.

Read More

Cross-Border Sewage Contaminated Flows: Monitoring the Tijuana River

The Tijuana River runs across the US-Mexico boundary, flowing into and throughout southern California, carrying with it nutrients and contaminants throughout the estuary. In recent decades, the flows have been heavily polluted with untreated sewage from the City of Tijuana. The wastewater enters the greater Tijuana River estuary, impacting coastal communities and disrupting the natural environment. In order to better understand these cross-border flows, researchers out of San Diego University sought to monitor the waterway test the capabilities of in-situ sensors to measure the contaminated water. Natalie Mladenov and Trent Biggs were two of the researchers involved in the project, deploying a real-time monitoring system in May of 2021.

Read More