Used YSI 6920 V2-2 Water Quality Sonde

The YSI 6920 V2-2 sonde is an economical logging system, ideal for long-term in situ monitoring and profiling of temperature, conductivity, pH, ORP, dissolved oxygen, and turbidity.

Features

  • Internal battery pack & memory for long-term, unattended deployments
  • All sensors are field-replaceable, and optical sensors feature self-cleaning wipers
  • Compatible with NexSens real-time data logging systems
Your Price Call
Stock Check Availability  

Perfect for harsh fouling environments, YSI's optical sensors feature an integrated wiper that prevents the impacts of biofouling, a corrosion-resistant titanium wiper shaft, and replaceable seals. 

The YSI 6920 V2-2 sonde features an internal battery pack with memory for long-term, unattended deployments. Additionally, the sonde can be powered by a 650 display unit for spot sampling applications.

The YSI 6920 V2-2 has the following available ports:

 

  • (1) Temperature/Conductivity
  • (1) pH or pH/ORP
  • (1) ISE (Nitrate, Ammonium, or Chloride)
  • (2) Optical (Dissolved Oxygen, Turbidity, Chlorophyll, Blue-Green Algae, and/or Rhodamine)
  • Medium: Fresh, sea, or polluted water
  • Operating Temperature: -5 to +50 C
  • Storage Temperature: -10 to +60 C
  • Communications: RS-232, SDI-12
  • Software: EcoWatch
  • Diameter: 2.85" (7.24cm)
  • Length: 18" (45.7cm)
  • Weight: 4 lbs. (1.8kg)
  • Internal Power: 8 AA-size alkaline batteries
  • External Power: 12 VDC
  • (1) YSI 6920 V2-2
  • (1) Temperature/conductivity sensor
  • (1) Soft-sided carrying case
  • (1) EcoWatch for Windows software CD
  • (1) Calibration cup
  • (1) Probe guard
  • (1) 6-Series operations manual
  • (1) Maintenance kit
Questions & Answers
My DO% samples read low and then high to low, is this a bad reading?
The initial power up can make the first two DO% readings read low. These readings can be disregarded.
My sonde is reading a negative value for turbidity, did I calibrate incorrectly?
A sonde (even if cleaned properly) can contaminate to almost 1.0 NTU. Typically the average contaminant level ranges from 0.2 to 0.8 NTU. With this knowledge, you can enter this offset (0.5 NTU) using the sonde's One-Point Calibration feature. This calibration is only done after a two- or three- point calibration is completed. To do a One-Point Calibration after a two- or three- point calibration: Place the sonde in a container of zero standard or filtered DI water. Use of the supplied calibration/storage cup is recommended; however, any generic glass or plastic container can be used as long as the probe guard is installed. Enter the Turbidity offset as 0.5 NTU, operate the wiper and inspect for air bubbles. Wait at least 60 seconds after the last wiper to accept the calibration point.
Did you find what you were looking for?

Select Options

  Products 0 Item Selected
Image
Part #
Description
Price
Stock
Quantity
Used YSI 6920 V2-2 Water Quality Sonde
6920V2-R
Used 6920 V2-2 Sonde with temperature/conductivity sensor
Request Quote
Check Availability  
  Accessories 0 Item Selected
Notice: At least 1 product is not available to purchase online
×
Multiple Products

have been added to your cart

There are items in your cart.

Cart Subtotal: $xxx.xx

Go to Checkout

In The News

Climate Change and Microplastics: Monitoring Lake Champlain

Most people go to Lake Champlain for its exceptional views and thrilling boating, but it’s also home to a wide variety of interesting aquatic research projects. From studying microplastics to thermal dynamics of the lake, Timothy Mihuc, director of the Lake Champlain Research Institute (LCRI) at the State University of New York at Plattsburgh (SUNY Plattsburgh), has spent his career studying aquatic ecosystems.  As an aquatic biologist, he’s the main investigator on Lake Champlain’s research studies while also managing their grants, employees, and their hands-on buoy work.  Over the years, LCRI has received a number of environmental grants that aid in its monitoring research.

Read More

Current Monitoring after the Francis Scott Key Bridge Collapse

On March 26th, according to The Baltimore Sun , a 984-foot, 112,000-ton Dali lost propulsion and collided with a support column of the Francis Scott Key Bridge, collapsing the structure. Soon after the event, search and rescue, salvage crews, and other emergency responders were mobilized after the collision. As salvage efforts progressed in early April, NOAA’s Center for Operational Oceanographic Products and Services (CO-OPS) responded to a request for real-time tidal currents data and deployed a current monitoring buoy—CURBY (Currents Real-time BuoY)—into the Patapsco River north of the Francis Scott Key Bridge.

Read More

Soundscapes of the Solar Eclipse: Citizen Science Supporting National Research

On April 8, 2024, millions of people around the world had their eyes glued to the sky to witness a historic cosmic event. The total solar eclipse captured the headlines and the minds of many who became eager to gaze at the heavens as the sky went dark for a few minutes. However, not everyone used their sense of sight during the eclipse, some were listening to the sounds of the natural world around them as the light faded from above. The Eclipse Soundscape Project is a NASA-funded citizen science project that focuses on studying how the annular solar eclipse on October 14, 2023, and the April 8, 2024 total solar eclipse impacted life on Earth.  The project revisits an initiative from the 1930s that showed animals and insects are affected by solar eclipses.

Read More