YOUNG ResponseONE Ultrasonic Anemometer
Features
- Optional internal compass to for mobile applications
- Serial output formats include SDI-12, NMEA, and ASCII text
- Wiring connections are made in a convenient weatherproof junction box
- Free ground shipping
- Expedited repair and warranty service
- Lifetime technical support
- More
Overview
The YOUNG Model 915000 and 910000 ResponseONE Ultrasonic Anemometer is ideal for general meteorological applications requiring accurate and reliable measurements.
Durable
The IP66 rated construction enables reliable operation in severe environments. Each sensor is fully wind tunnel tested and calibrated to provide accurate wind measurement over a wide operating range. Standard serial output formats include SDI-12, NMEA, and ASCII text. Output may be continuous or polled to conserve power. Standard RS-232 or RS-485 serial formats enable direct integration with YOUNG displays, marine NMEA systems, data loggers or other compatible serial devices. The sensor mounts on a standard 1-inch IPS pipe. A mounting orientation ring is included that engages with the base of the sensor to retain orientation when the sensor is removed for maintenance. Terminations are made in a junction box at the base of the sensor by small clamp-style connectors (no special connectors are required).
Internal Compass
The YOUNG Model 91500 ResponseONE Ultrasonic Anemometer includes an internal compass to provide orientation for wind direction, making it ideal for mobile or portable applications.
Wind Speed:
Range: 0-70 m/s (156 mph)
Resolution: 0.01 m/s
Accuracy:
+/-2% or 0.3 m/s (0-30 m/s)
+/- 3% (30-70 m/s)
Wind Direction:
Azimuth Range: 0-360 degrees
Resolution: 0.1 degree
Accuracy: +/- 2 degrees
Electronic Compass (Models 91500 & 91500B):
Range: 0-360 degrees
Resolution: 1 degree
Accuracy: +/- 1.4 degrees
Serial Output (selectable):
Interface: RS-232, RS-485/422, SDI-12
Formats: NMEA, SDI-12, ASCII (polled or continuous)
Baud Rates: 1200, 4800, 9600, 19200, 38400
Power:
Voltage: 10-30 VDC
General:
Protection Class: IP66
EMC Compliance: FCC Class A digital device, IEC Standard 61326-1
Dimensions: 22.5 cm high x 13.5 cm wide
Weight: 0.36 kg (0.8 lb)
Shipping Weight: 1.27 kg (2.8 lb)
Operating Temperature: -40 to +60 C
Removable Bird Spikes: Included
In The News
Cal Poly, San Luis Obispo Manages Monitoring Efforts in Morro Bay
California Polytechnic State University, San Luis Obispo (Cal Poly, SLO), has been monitoring Morro Bay for decades, and while the monitoring program has changed over the years, the dedication to monitoring the bay has remained the same. 
 
The project started in 2006 as a Packard Foundation-funded initiative to monitor water quality flowing in and out of Morro Bay. The goal at the time was to use the data collected to develop and inform an ecosystem-based management plan in collaboration with the Morro Bay National Estuary Program (MBNEP). 
 
Since the estuary was the focus at the time, researchers were monitoring water flowing into the estuary from Chorro Creek and Los Osos Creek.
Read MoreGreen Water in Green Bay: Using Data Buoys to Monitor the Southern Bay
While the bay of Green Bay has been referred to as the largest freshwater “estuary” in the world, the watershed hosts intensive agriculture and contributes one-third of Lake Michigan’s total phosphorus load. 
 
 The Fox River flows into the bay, carrying excess nutrients largely the result of non-point source runoff from the watershed. With a history of deterioration extending well into the last century, the bay ecosystem suffered significant declines in water quality. 
 
 This, in turn, stimulated major clean-up and ongoing restoration efforts to improve water quality. Tracking these changes is an important aspect of ecosystem management.
Read MoreCross-Border Sewage Contaminated Flows: Monitoring the Tijuana River
The Tijuana River runs across the US-Mexico boundary, flowing into and throughout southern California, carrying with it nutrients and contaminants throughout the estuary. In recent decades, the flows have been heavily polluted with untreated sewage from the City of Tijuana. 
 
The wastewater enters the greater Tijuana River estuary, impacting coastal communities and disrupting the natural environment. In order to better understand these cross-border flows, researchers out of San Diego University sought to monitor the waterway test the capabilities of in-situ sensors to measure the contaminated water. 
 
Natalie Mladenov and Trent Biggs were two of the researchers involved in the project, deploying a real-time monitoring system in May of 2021.
Read More