YSI 2002 Galvanic Dissolved Oxygen Sensor

The YSI 2002 galvanic dissolved oxygen sensor provides instant and reliable DO readings. It includes the 5913 yellow 1.25 mil PE membrane kit.

Features

  • Galvanic sensors have no warm-up time and are immediately ready for calibration and use
  • Easily inserts into the probe module and cable assembly
  • Compatible with YSI 5912, 5913, or 5914 screw-on cap membranes
List Price $236.00
$224.20
Stock 1AVAILABLE
  • 6-month warranty
  • (1) YSI 2002 DO module
  • (1) 5913 cap membrane kit
  • (1) Instruction sheet
  • (1) Hex wrench
  • (1) Set screw
Questions & Answers
How does a Galvanic DO Sensor work?
In a Galvanic sensor, the cathode is silver and the anode is zinc. The two materials are dissimilar enough to self-polarize and reduce oxygen molecules without an applied voltage. This is similar to how a battery works. The system uses a meter to read the electrical signal and the signal is proportional to the amount of oxygen passing through the membrane.
Why can the Galvanic sensor be used immediately after it is powered on?
The Galvanic sensor contains silver and zinc. These two materials are different enough to self-polarize without added voltage. This allows them to be used immediately instead of waiting on the anode and cathode to polarize.
I am having trouble getting an accurate reading, what can I be doing incorrectly?
The steady-state sensor reduces oxygen, meaning it is flow dependent. The sensors require stirring or sample movement to produce accurate readings.
Is there a blue 2.0 mil cap available for the 2002 galvanic DO sensor?
Yes, part 605914, is a 2.0 mil cap that can be used with the 2002 galvanic dissolved oxygen sensor.
Did you find what you were looking for?

Select Options

  Products 0 Item Selected
Image
Part #
Description
Price
Stock
Quantity
YSI 2002 Galvanic Dissolved Oxygen Sensor
605202
2002 galvanic DO sensor with yellow 1.25 mil PE membrane kit, Pro Series
$224.20
1 Available
  Accessories 0 Item Selected
Notice: At least 1 product is not available to purchase online
×
Multiple Products

have been added to your cart

There are items in your cart.

Cart Subtotal: $xxx.xx

Go to Checkout

In The News

Save our Bogs! Culture, Conservation and Climate Action in Ireland’s Peatlands

Characterized by long-term accumulation under waterlogged conditions, peatlands exist on every continent and account for 3-4% of the global land surface . Small but mighty, these often overlooked wetland environments are estimated to hold as much as one-third of the world's organic carbon in their soil—twice the amount found in the entirety of the Earth's forest biomass. While healthy peatlands can trap and store carbon, regulate water, and provide important habitats for rare species, human alteration has disturbed peatland carbon and nitrogen cycles on a global scale. Approximately 12% of the world’s peatlands have been drained and degraded through conversion for agriculture, forestry, infrastructure development, and other uses.

Read More

Sargassum Surge: How Seaweed is Transforming our Oceans and Coastal Ecosystems

Until recently, Sargassum –a free-floating seaweed–was distributed throughout the Sargasso Sea , the north Caribbean Sea, and the Gulf of Mexico. But in the space of a decade, this seaweed has, as one scientist remarks , “Gone from a nonfactor to the source of a terrible crisis.” Driven by climate change, anomalous North Atlantic Oscillation in 2009-2010 and a glut of anthropogenic pollutants, sargassum has proliferated. Seasonally recurrent mats as deep as 7m now bloom in the “Great Atlantic Sargassum Belt” (GASB), which covers areas of the Atlantic from West Africa to the Caribbean Sea and Gulf of Mexico. Every year, millions of tons wash up along the shores of more than 30 countries . Dr.

Read More

Great Lakes Research Center: Designing Targeted Monitoring Solutions

According to the National Oceanic and Atmospheric Administration ( NOAA ), the Great Lakes have more miles of coastline than the contiguous Atlantic and Pacific coasts combined and contain 20 percent of the world's freshwater, making it a critical region to protect and conserve. Continuous monitoring and data-informed resource management are key components of managing waters in the region. Hayden Henderson, a research engineer with the Great Lakes Research Center (GLRC), designs and deploys monitoring platforms throughout the Great Lakes. With a background in environmental engineering, Henderson enjoyed the challenge of creating systems and making them work to obtain difficult, remote measurements.

Read More