YSI 6131 Blue-Green Algae Sensor

The YSI 6131 blue-green algae sensor monitors algal populations at natural levels in freshwater, providing an early warning for bloom conditions.

Features

  • YSI 6131 BGA Sensor is designed for freshwater (phycocyanin) environments
  • Optimized for excellent sensitivity for monitoring algal populations at natural levels
  • Insensitive to potential interferences including chlorophyll, turbidity, and dissolved organics
Your Price Call
Stock Check Availability  

Overview
The YSI 6131 blue-green algae sensor monitors algal populations at natural levels in freshwater, providing an early warning for bloom conditions. Blue-green algae (or cyanobacteria) monitoring is of growing interest due to the problems some species can present through the production of toxins and compounds that deteriorate the quality of drinking water and through the formation of blooms. Blue-green algae are of interest for ecosystem studies and monitoring as well, where they may represent the most abundant primary producer.

Compatible with YSI 6-Series Sondes
The YSI 6131 blue-green algae sensor is fully compatible with all YSI 6-series sondes equipped with optical ports. YSI's optical sensors use an integrated wiping system to provide anti-fouling in the most hostile environments. Durable mechanical features include a non-corroding titanium wiper shaft, a replaceable wiper shaft seal, and a new switch-controlled wiper parking system to prevent mis-parking.

  • Range: ~0 to 280,000 cells/mL; 0 to 100 RFU
  • Detection Limit: ~220 cells/mL
  • Resolution: 1 cell/mL; 0.1 RFU
  • Linearity: R2> 0.9999
  • Warranty: 2 years
Questions & Answers
Does my sensor need to be cleaned after deployment?
After deployment, inspect for fouling and gently clean the sensor head. Wipers may need to be replaced depending on usage.
How long can I keep my Rhodamine WT dilution?
After diluting the Rhodamine WT solution, it should be used within 5 days.
Can the optical face of a YSI 6131 BGA probe be replaced by the user?
No, the optical face of the 6-series BGA probe cannot be replaced by the user. If this surface is damaged and causing inaccurate readings the sensor can be evaluated for potential repair, by sending the probe to our repair department (www.fondriest.com/service-repair), however, it is recommended to replace the probe entirely if it is over 5 years old.
Did you find what you were looking for?

Select Options

  Products 0 Item Selected
Image
Part #
Description
Price
Stock
Quantity
YSI 6131 Blue-Green Algae Sensor
606131
6131 BGA (phycocyanin) sensor with self-cleaning wiper
Request Quote
Check Availability  
  Accessories 0 Item Selected
Notice: At least 1 product is not available to purchase online
×
Multiple Products

have been added to your cart

There are items in your cart.

Cart Subtotal: $xxx.xx

Go to Checkout

In The News

Cal Poly, San Luis Obispo Manages Monitoring Efforts in Morro Bay

California Polytechnic State University, San Luis Obispo (Cal Poly, SLO), has been monitoring Morro Bay for decades, and while the monitoring program has changed over the years, the dedication to monitoring the bay has remained the same. The project started in 2006 as a Packard Foundation-funded initiative to monitor water quality flowing in and out of Morro Bay. The goal at the time was to use the data collected to develop and inform an ecosystem-based management plan in collaboration with the Morro Bay National Estuary Program (MBNEP). Since the estuary was the focus at the time, researchers were monitoring water flowing into the estuary from Chorro Creek and Los Osos Creek.

Read More

Green Water in Green Bay: Using Data Buoys to Monitor the Southern Bay

While the bay of Green Bay has been referred to as the largest freshwater “estuary” in the world, the watershed hosts intensive agriculture and contributes one-third of Lake Michigan’s total phosphorus load.  The Fox River flows into the bay, carrying excess nutrients largely the result of non-point source runoff from the watershed. With a history of deterioration extending well into the last century, the bay ecosystem suffered significant declines in water quality.  This, in turn, stimulated major clean-up and ongoing restoration efforts to improve water quality. Tracking these changes is an important aspect of ecosystem management.

Read More

Cross-Border Sewage Contaminated Flows: Monitoring the Tijuana River

The Tijuana River runs across the US-Mexico boundary, flowing into and throughout southern California, carrying with it nutrients and contaminants throughout the estuary. In recent decades, the flows have been heavily polluted with untreated sewage from the City of Tijuana. The wastewater enters the greater Tijuana River estuary, impacting coastal communities and disrupting the natural environment. In order to better understand these cross-border flows, researchers out of San Diego University sought to monitor the waterway test the capabilities of in-situ sensors to measure the contaminated water. Natalie Mladenov and Trent Biggs were two of the researchers involved in the project, deploying a real-time monitoring system in May of 2021.

Read More