YSI 6155 Optical DO Membrane Kit

The YSI 6155 optical DO membrane kit is a replacement kit for the 6150 ROX optical dissolved oxygen sensor.

Features

  • YSI recommends that membrane is replaced annually
  • User-replaceable membrane with step-by-step instructions
  • Includes tool for replacing membrane
Your Price $270.00
Stock 1AVAILABLE

Note:  All optical DO membranes are now manufactured from anti-fouling copper alloy; these membranes directly replace black plastic membranes. Anti-fouling membranes can be used on existing ROX probes with no detrimental effects on data. The copper-alloy YSI 6155 optical DO membrane may arrive with surface patina and/or discoloration. This will not affect membrane performance.

  • (1) YSI 6155 optical DO membrane
  • (3) Installation screws
  • (1) Hex wrench
  • (1) Instruction sheet with calibration coefficients
Questions & Answers
How do I replace the membrane?
The 6155 kit comes with everything required for installation. To replace the membrane, remove the old membrane and clean around the probe face. Make sure the surface under the membrane is clean and dry before replacing. After replacing the new membrane, power the sonde and enter the calibration constants (K numbers included with the membrane kit).
Did you find what you were looking for?

Select Options

  Products 0 Item Selected
Image
Part #
Description
Price
Stock
Quantity
YSI 6155 Optical DO Membrane Kit
606155
6155 optical DO membrane kit
Your Price $270.00
1 Available
  Accessories 0 Item Selected
Notice: At least 1 product is not available to purchase online
×
Multiple Products

have been added to your cart

There are items in your cart.

Cart Subtotal: $xxx.xx

Go to Checkout

In The News

Wisconsin watershed program involves high schools to collect, share data

A group of high schoolers in the Green Bay, Wisc. area are learning about careers in environmental science thanks to the Lower Fox River Watershed Monitoring Program. The program, supported by the University of Wisconsin, has involved more than 700 students since its 2003 launch. “We have almost ten years of data,” said Annette Pelegrin, program coordinator. “It began in 2003 with five watersheds. We’ve trained teachers and schools that are interested and showed them how to measure different parameters.” Those include flow, temperature, transparency and turbidity of the program’s streams. YSI 55 meters are used to measure dissolved oxygen and levels of phosphorus, ammonia and nitrogen are checked with a Hach colorimeter.

Read More

From Pans to Buoys: Advancing Reservoir Evaporation Rate Monitoring in Texas

In warmer climates like Texas, high reservoir evaporation rates can lead to declines in water level and water availability during droughts, making monitoring essential in order to ensure water security during times of scarcity. According to the Texas Water Development Board (TWDB), evaporation rates in Texas were previously based on data collected from a sparse network of Class A evaporation stations, dating back to the 1960s. These pans were stationed near reservoirs and still remain a widely accepted standardized approach to measuring evaporation rates on land. Monthly pan-to-lake coefficients were developed in the 1980s to connect the data collected from the pans to known lake conditions, extrapolating evaporation rates of the lakes using the pan data.

Read More

A Drop in the Ocean: Restoring London’s Tidal Thames

The United Kingdom has grappled with wastewater management problems for decades. Although sewage treatment in the 20th century allowed many rivers, including the tidal Thames, to have healthy fish populations, combined sewer overflows into rivers–most commonly during heavy rainfall–affected water quality and occasionally even killed fish. Problems reached a head in 2012 when multiple infractions of European urban wastewater treatment laws threatened costly fines, on top of the environmental cost of repeated sewage spills into British rivers. Fast forward to 2025, and after a decade of construction work, London’s Thames Tideway Tunnel , affectionately dubbed the “super sewer”, is now fully activated and ready for testing.

Read More