YSI ProDSS pH Sensors

The YSI ProDSS pH and pH/ORP sensors are digital smart sensors featuring welded titanium construction for use with the ProDIGITAL family of instruments.

Features

  • 0 to 14 unit measurement range
  • T63<3 sec response time
  • ±0.2 pH unit accuracy within ±10˚C of calibration temp
List Price $534.00
$507.30
Stock 5AVAILABLE

Overview
The YSI ProDSS pH and pH/ORP sensors are digital smart sensors featuring welded titanium construction for use with the ProDIGITAL family of instruments. Compatible instruments include the ProDSS Meter, ProSwap Meter, and ProSwap Logger. Users can choose between a pH sensor or a combination pH/ORP sensor to measure these parameters. pH describes the acid and base characteristics of water. A pH of 7.0 is neutral; values below 7 are acidic; values above 7 are alkaline. ORP designates the oxidizing-reducing potential of a water sample and is useful for water which contains a high concentration of redox-active species, such as the salts of many metals and strong oxidizing (chlorine) and reducing (sulfite ion) agents. However, ORP is a non-specific measurement—the measured potential is reflective of a combination of the effects of all the dissolved species in the medium. Users should be careful not to overinterpret ORP data unless specific information about the site is known.

Replaceable Sensor Module
The ProDSS pH and pH/ORP sensors have a unique design that incorporates a user-replaceable sensor tip (module) and a reusable sensor base that houses the processing electronics, memory, and wet-mate connector. This allows users to reduce the costs associated with pH and pH/ORP sensors by only replacing the relatively inexpensive module periodically and not the more costly base.

Electrodes
ProDSS measures pH with two electrodes combined in the same probe: one for hydrogen ions and one as a reference. The sensor is a glass bulb filled with a solution of stable pH (usually 7) and the inside of the glass surface experiences constant binding of H+ ions. The outside of the bulb is exposed to the sample, where the concentration of hydrogen ions varies. The resulting differential creates a potential read by the meter versus the stable potential of the reference.

The ORP of the media is measured by the difference in potential between an electrode which is relatively chemically inert and a reference electrode. The ORP sensor consists of a platinum button found on the tip of the probe. The potential associated with this metal is read versus the Ag/AgCl reference electrode of the combination sensor that utilizes gelled electrolyte. ORP values are presented in millivolts and are not compensated for temperature.

Signal Quality
Signal conditioning electronics within the pH sensor module improve response, increase stability, and reduce proximal interference during calibration. Amplification (buffering) in the sensor head is used to eliminate any issue of humidity in the front-end circuitry and reduce noise.

ProDSS Smart Sensor Specifications:

Parameter
Range Accuracy* Resolution

Conductivity

0 to 200 mS/cm

From 100 to 200 mS/cm: ± 1% 

**0.001, 0.01 or 0.1 µS/cm

Temperature

-5 to 70 °C

± 0.2 °C 

0.1 °C or 0.1 °F

Dissolved Oxygen

0 to 50 mg/L

From 0 to 20 mg/L: ± 1% 

From 20 to 50 mg/L: ± 8%

0.01 mg/L or 0.1 mg/L 

pH

0 to 14

± 0.2 

0.01

ORP

-1999 to 1999 mV

± 20 mV

0.1 mV

Turbidity

0 to 4000 FNU

From 0 to 999 FNU: ± 2%

From 1000 to 4000 FNU: ± 5%

0.1 FNU

Freshwater Total Algae

0 to 100 µg/L PC

r2 = 0.999

0.01 µg/L PC

Saltwater Total Algae

0 to 280 µg/L PE

r2 = 0.999

0.01 µg/L PE

Nitrate

0 to 200 mg/L

± 10%

0.01 mg/L

Ammonium

0 to 200 mg/L 

± 10%

0.01 mg/L

Chloride

0 to 1000 mg/L Cl

± 15%

0.01 mg/L


*Reference specification for each sensor for more details on accuracy
** Range dependent

Questions & Answers
How can I verify the condition/response that my sensor is in after a period of use?
mV readings and slopes should be observed to verify the response of your pH sensor. These figures can be viewed during calibration and standard mV readings can be found on page 44 of the manual. https://www.fondriest.com/pdf/ysi_prodss_manual.pdf
How long is the warranty for the sensor/modules?
The sensor’s titanium base carries a 2-year warranty, and the consumable pH module has a 1-year warranty.
Do I need to keep the solution that I received with this sensor?
Yes, there are specific storage guidelines for pH and conductivity sensors. You can view them on page 57 of the manual. The main consideration is to make sure the sensor does not dry out. https://www.fondriest.com/pdf/ysi_prodss_manual.pdf
How often does the ProDSS pH/ORP sensor need to be calibrated?
The pH and ORP sensors should be verified every use, but may hold calibration for several days.
Did you find what you were looking for?

Select Options

  Products 0 Item Selected
Image
Part #
Description
Price
Stock
Quantity
YSI ProDSS pH Sensors
626903
ProDSS pH sensor
$507.30
5 Available
YSI ProDSS pH Sensors
626904
ProDSS pH/ORP sensor
$645.05
More On The Way  
  Accessories 0 Item Selected
Notice: At least 1 product is not available to purchase online
×
Multiple Products

have been added to your cart

There are items in your cart.

Cart Subtotal: $xxx.xx

Go to Checkout

In The News

Save our Bogs! Culture, Conservation and Climate Action in Ireland’s Peatlands

Characterized by long-term accumulation under waterlogged conditions, peatlands exist on every continent and account for 3-4% of the global land surface . Small but mighty, these often overlooked wetland environments are estimated to hold as much as one-third of the world's organic carbon in their soil—twice the amount found in the entirety of the Earth's forest biomass. While healthy peatlands can trap and store carbon, regulate water, and provide important habitats for rare species, human alteration has disturbed peatland carbon and nitrogen cycles on a global scale. Approximately 12% of the world’s peatlands have been drained and degraded through conversion for agriculture, forestry, infrastructure development, and other uses.

Read More

Sargassum Surge: How Seaweed is Transforming our Oceans and Coastal Ecosystems

Until recently, Sargassum –a free-floating seaweed–was distributed throughout the Sargasso Sea , the north Caribbean Sea, and the Gulf of Mexico. But in the space of a decade, this seaweed has, as one scientist remarks , “Gone from a nonfactor to the source of a terrible crisis.” Driven by climate change, anomalous North Atlantic Oscillation in 2009-2010 and a glut of anthropogenic pollutants, sargassum has proliferated. Seasonally recurrent mats as deep as 7m now bloom in the “Great Atlantic Sargassum Belt” (GASB), which covers areas of the Atlantic from West Africa to the Caribbean Sea and Gulf of Mexico. Every year, millions of tons wash up along the shores of more than 30 countries . Dr.

Read More

Great Lakes Research Center: Designing Targeted Monitoring Solutions

According to the National Oceanic and Atmospheric Administration ( NOAA ), the Great Lakes have more miles of coastline than the contiguous Atlantic and Pacific coasts combined and contain 20 percent of the world's freshwater, making it a critical region to protect and conserve. Continuous monitoring and data-informed resource management are key components of managing waters in the region. Hayden Henderson, a research engineer with the Great Lakes Research Center (GLRC), designs and deploys monitoring platforms throughout the Great Lakes. With a background in environmental engineering, Henderson enjoyed the challenge of creating systems and making them work to obtain difficult, remote measurements.

Read More