Onset HOBOnet Wireless Water Level Sensor Interface
Features
- 900 MHz wireless mesh self-healing technology
- 450 to 600 meter (1,500 to 2,000 feet) wireless range and up to five hops
- Up to 50 wireless sensors or 336 data channels per HOBO RX station
- Free ground shipping
- Expedited repair and warranty service
- Lifetime technical support
- More
The HOBOnet water level sensor interface features a pre-configured, easily deployed wireless sensor that communicates accurate, reliable water level data directly to a HOBO RX3000 or HOBO MicroRX station, the core component of the HOBOnet remote monitoring system.
HOBOnet is a cost-effective, scalable, user-friendly wireless sensor network that lets you streamline data retrieval by effortlessly monitoring multiple wells with a single cellular device. Data is accessed from anywhere, at any time, through the customizable dashboard in HOBOlink, Onset's innovative cloud software platform – eliminating the need for frequent site visits that are both time-consuming and costly. HOBOlink also sends automatic, real-time text/email notifications to alert you of any sensor or system alarms, providing the insights you need to make informed decisions, react quickly to stay ahead of issues, and ensure compliance.
A complete system requires at least one HOBOnet Water Level Sensor, a direct read cable, and a HOBO RX3000 Remote Monitoring Station and HOBOnet Wireless Manager (or a HOBO MicroRX Station with an integrated HOBOnet Wireless Manager). HOBOnet Wireless Repeaters can be added to extend the range.
In The News
From Pans to Buoys: Advancing Reservoir Evaporation Rate Monitoring in Texas
In warmer climates like Texas, high reservoir evaporation rates can lead to declines in water level and water availability during droughts, making monitoring essential in order to ensure water security during times of scarcity. 
 
According to the Texas Water Development Board (TWDB), evaporation rates in Texas were previously based on data collected from a sparse network of Class A evaporation stations, dating back to the 1960s. These pans were stationed near reservoirs and still remain a widely accepted standardized approach to measuring evaporation rates on land. 
 
Monthly pan-to-lake coefficients were developed in the 1980s to connect the data collected from the pans to known lake conditions, extrapolating evaporation rates of the lakes using the pan data.
Read MoreA Drop in the Ocean: Restoring London’s Tidal Thames
The United Kingdom has grappled with wastewater management problems for decades. Although sewage treatment in the 20th century allowed many rivers, including the tidal Thames, to have healthy fish populations, combined sewer overflows into rivers–most commonly during heavy rainfall–affected water quality and occasionally even killed fish. 
 
Problems reached a head in 2012 when multiple infractions of European urban wastewater treatment laws threatened costly fines, on top of the environmental cost of repeated sewage spills into British rivers. 
 
Fast forward to 2025, and after a decade of construction work, London’s Thames Tideway Tunnel , affectionately dubbed the “super sewer”, is now fully activated and ready for testing.
Read MoreHave You Heard? AI Buoys Revolutionizing Marine Mammal Monitoring in Whangārei Harbor, New Zealand
In one history, Whangārei Harbor, nestled in the lush hills of New Zealand’s North Island, gets its name from the Māori, “waiting for the breastbone of the whale.” It seems fitting, then, that it’s now home to state-of-the-art acoustic monitoring buoys listening for marine mammals around the clock. 
 
In September 2024, a team from Auckland-based underwater acoustics firm Cetaware Ltd installed NexSens buoys in Northport, a major commercial port at the entrance to the Whangārei Harbor. 
 
The first buoys to be installed by Cetaware in a permanent setting running 24/7, they use real-time artificial intelligence (AI) models to passively sense Delphinidae–from common dolphins to orcas. 
 
Dr.
Read More